终身会员
搜索
    上传资料 赚现金

    北京市通州区2022年毕业升学考试模拟卷数学卷含解析

    立即下载
    加入资料篮
    北京市通州区2022年毕业升学考试模拟卷数学卷含解析第1页
    北京市通州区2022年毕业升学考试模拟卷数学卷含解析第2页
    北京市通州区2022年毕业升学考试模拟卷数学卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京市通州区2022年毕业升学考试模拟卷数学卷含解析

    展开

    这是一份北京市通州区2022年毕业升学考试模拟卷数学卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,已知方程组,那么x+y的值等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围在数轴上表示为( )
    A. B.
    C. D.
    2.如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是( )

    A. B. C. D.
    3.若抛物线y=x2-(m-3)x-m能与x轴交,则两交点间的距离最值是( )
    A.最大值2, B.最小值2 C.最大值2 D.最小值2
    4.下列图形中,线段MN的长度表示点M到直线l的距离的是( )
    A. B. C. D.
    5.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为(  )

    A.(﹣4,﹣2﹣) B.(﹣4,﹣2+) C.(﹣2,﹣2+) D.(﹣2,﹣2﹣)
    6.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 (  )

    A.2 B.2 C.3 D.
    7.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有(   )和黑子.

    A.37 B.42 C.73 D.121
    8.已知方程组,那么x+y的值(  )
    A.-1 B.1 C.0 D.5
    9.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为( )

    A. B.2 C. D.3
    10.如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tan∠ACB·tan∠ABC=( )

    A.2 B.3 C.4 D.5
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若点与点关于原点对称,则______.
    12.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=_____

    13.因式分解:a2﹣a=_____.
    14.如图是“已知一条直角边和斜边作直角三角形”的尺规作图过程

    已知:线段a、b,
    求作:.使得斜边AB=b,AC=a
    作法:如图.
    (1)作射线AP,截取线段AB=b;
    (2)以AB为直径,作⊙O;
    (3)以点A为圆心,a的长为半径作弧交⊙O于点C;
    (4)连接AC、CB.即为所求作的直角三角形.
    请回答:该尺规作图的依据是______.
    15.计算:______.
    16.如图△EDB由△ABC绕点B逆时针旋转而来,D点落在AC上,DE交AB于点F,若AB=AC,DB=BF,则AF与BF的比值为_____.

    三、解答题(共8题,共72分)
    17.(8分)解方程式:- 3 =
    18.(8分)如图,在Rt△ABC的顶点A、B在x轴上,点C在y轴上正半轴上,且
    A(-1,0),B(4,0),∠ACB=90°.
    (1)求过A、B、C三点的抛物线解析式;
    (2)设抛物线的对称轴l与BC边交于点D,若P是对称轴l上的点,且满足以P、C、D为顶点的三角形与△AOC相似,求P点的坐标;
    (3)在对称轴l和抛物线上是否分别存在点M、N,使得以A、O、M、N为顶点的四边形是平行四边形,若存在请直接写出点M、点N的坐标;若不存在,请说明理由.

    图1 备用图
    19.(8分)如图,已知正比例函数y=2x与反比例函数y=(k>0)的图象交于A、B两点,且点A的横坐标为4,
    (1)求k的值;
    (2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;
    (3)过原点O的另一条直线l交双曲线y=(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.

    20.(8分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.求证:CD∥AB;填空:
    ①当∠DAE=   时,四边形ADFP是菱形;
    ②当∠DAE=   时,四边形BFDP是正方形.

    21.(8分)如图1,已知扇形MON的半径为,∠MON=90°,点B在弧MN上移动,联结BM,作OD⊥BM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,∠COM的正切值为y.
    (1)如图2,当AB⊥OM时,求证:AM=AC;
    (2)求y关于x的函数关系式,并写出定义域;
    (3)当△OAC为等腰三角形时,求x的值.

    22.(10分)已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.求一次函数和反比例函数的解析式;求△AOB的面积;观察图象,直接写出不等式kx+b﹣>0的解集.

    23.(12分)如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(-3,0).

    (1)求点B的坐标;
    (2)已知,C为抛物线与y轴的交点.
    ①若点P在抛物线上,且,求点P的坐标;
    ②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.
    24.如图,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,点M为边BC上一动点,联结AM并延长交射线DC于点F,作∠FAE=45°交射线BC于点E、交边DCN于点N,联结EF.
    (1)当CM:CB=1:4时,求CF的长.
    (2)设CM=x,CE=y,求y关于x的函数关系式,并写出定义域.
    (3)当△ABM∽△EFN时,求CM的长.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    试题分析:根据根的判别式和根与系数的关系列出不等式,求出解集.
    解:∵关于x的一元二次方程x2+2x+k+1=0有两个实根,
    ∴△≥0,
    ∴4﹣4(k+1)≥0,
    解得k≤0,
    ∵x1+x2=﹣2,x1•x2=k+1,
    ∴﹣2﹣(k+1)<﹣1,
    解得k>﹣2,
    不等式组的解集为﹣2<k≤0,
    在数轴上表示为:

    故选D.
    点评:本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键.
    2、A
    【解析】
    ∵△DEF是△AEF翻折而成,
    ∴△DEF≌△AEF,∠A=∠EDF,
    ∵△ABC是等腰直角三角形,
    ∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,
    ∴∠BED=∠CDF,
    设CD=1,CF=x,则CA=CB=2,
    ∴DF=FA=2-x,
    ∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,
    解得x=,
    ∴sin∠BED=sin∠CDF=.
    故选:A.
    3、D
    【解析】
    设抛物线与x轴的两交点间的横坐标分别为:x1,x2,
    由韦达定理得:
    x1+x2=m-3,x1•x2=-m,
    则两交点间的距离d=|x1-x2|== ,
    ∴m=1时,dmin=2.
    故选D.
    4、A
    【解析】
    解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;
    图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.
    5、D
    【解析】
    解:作AD⊥BC,并作出把Rt△ABC先绕B点顺时针旋转180°后所得△A1BC1,如图所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=2,∴AD===,∴BD===1.∵点B坐标为(1,0),∴A点的坐标为(4,).∵BD=1,∴BD1=1,∴D1坐标为(﹣2,0),∴A1坐标为(﹣2,﹣).∵再向下平移2个单位,∴A′的坐标为(﹣2,﹣﹣2).故选D.

    点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.
    6、A
    【解析】
    连接BD,交AC于O,
    ∵正方形ABCD,
    ∴OD=OB,AC⊥BD,
    ∴D和B关于AC对称,
    则BE交于AC的点是P点,此时PD+PE最小,
    ∵在AC上取任何一点(如Q点),QD+QE都大于PD+PE(BE),
    ∴此时PD+PE最小,
    此时PD+PE=BE,
    ∵正方形的面积是12,等边三角形ABE,
    ∴BE=AB=,
    即最小值是2,
    故选A.

    【点睛】本题考查了正方形的性质,等边三角形的性质,轴对称-最短路线问题等知识点的应用,关键是找出PD+PE最小时P点的位置.
    7、C
    【解析】
    解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个.故选C.
    点睛:本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.
    8、D
    【解析】
    解:,
    ①+②得:3(x+y)=15,
    则x+y=5,
    故选D
    9、A
    【解析】
    设AC=a,由特殊角的三角函数值分别表示出BC、AB的长度,进而得出BD、CD的长度,由公式求出tan∠DAC的值即可.
    【详解】
    设AC=a,则BC==a,AB==2a,
    ∴BD=BA=2a,
    ∴CD=(2+)a,
    ∴tan∠DAC=2+.
    故选A.
    【点睛】
    本题主要考查特殊角的三角函数值.
    10、C
    【解析】
    如图(见解析),连接BD、CD,根据圆周角定理可得,再根据相似三角形的判定定理可得,然后由相似三角形的性质可得,同理可得;又根据圆周角定理可得,再根据正切的定义可得,然后求两个正切值之积即可得出答案.
    【详解】
    如图,连接BD、CD

    在和中,





    同理可得:
    ,即
    为⊙O的直径



    故选:C.

    【点睛】
    本题考查了圆周角定理、相似三角形的判定定理与性质、正切函数值等知识点,通过作辅助线,结合圆周角定理得出相似三角形是解题关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1
    【解析】
    ∵点P(m,﹣2)与点Q(3,n)关于原点对称,
    ∴m=﹣3,n=2,
    则(m+n)2018=(﹣3+2)2018=1,
    故答案为1.
    12、.
    【解析】
    解:令AE=4x,BE=3x,
    ∴AB=7x.
    ∵四边形ABCD为平行四边形,
    ∴CD=AB=7x,CD∥AB,
    ∴△BEF∽△DCF.
    ∴,
    ∴DF=
    【点睛】
    本题考查平行四边形的性质及相似三角形的判定与性质,掌握定理正确推理论证是本题的解题关键.
    13、a(a﹣1)
    【解析】
    直接提取公因式a,进而分解因式得出答案
    【详解】
    a2﹣a=a(a﹣1).
    故答案为a(a﹣1).
    【点睛】
    此题考查公因式,难度不大
    14、等圆的半径相等,直径所对的圆周角是直角,三角形定义
    【解析】
    根据圆周角定理可判断△ABC为直角三角形.
    【详解】
    根据作图得AB为直径,则利用圆周角定理可判断∠ACB=90°,从而得到△ABC满足条件.
    故答案为:等圆的半径相等,直径所对的圆周角是直角,三角形定义.
    【点睛】
    本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.
    15、
    【解析】
    原式=
    =.
    故答案为:.
    16、
    【解析】
    先利用旋转的性质得到BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,再利用等腰三角形的性质和三角形内角和定理证明∠ABD=∠A,则BD=AD,然后证明△BDC∽△ABC,则利用相似比得到BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,最后利用解方程求出AF与BF的比值.
    【详解】
    ∵如图△EDB由△ABC绕点B逆时针旋转而来,D点落在AC上,∴BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,∵∠ABE=∠ADF,∴∠CBD=∠ADF,∵DB=BF,∴BF=BD=BC,而∠C=∠EDB,∴∠CBD=∠ABD,∴∠ABC=∠C=2∠ABD,∵∠BDC=∠A+∠ABD,∴∠ABD=∠A,∴BD=AD,∴CD=AF,∵AB=AC,∴∠ABC=∠C=∠BDC,∴△BDC∽△ABC,∴BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,整理得AF2+BF∙AF-BF2=0,∴AF=BF,即AF与BF的比值为.故答案是.
    【点睛】
    本题主要考查了旋转的性质、等腰三角形的性质、相似三角形的性质,熟练掌握这些知识点并灵活运用是解题的关键.

    三、解答题(共8题,共72分)
    17、x=3
    【解析】
    先去分母,再解方程,然后验根.
    【详解】
    解:去分母,得1-3(x-2)=1-x,1-3x+6=1-x,x=3,经检验,x=3是原方程的根.
    【点睛】
    此题重点考察学生对分式方程解的应用,掌握分式方程的解法是解题的关键.
    18、见解析
    【解析】
    分析:(1)根据求出点的坐标,用待定系数法即可求出抛物线的解析式.
    (2)分两种情况进行讨论即可.
    (3)存在. 假设直线l上存在点M,抛物线上存在点N,使得以A、O、M、N为顶点的四边形为平行四边形.分当平行四边形是平行四边形时,当平行四边形AONM是平行四边形时,当四边形AMON为平行四边形时,三种情况进行讨论.
    详解:(1)易证,得,
    ∴OC=2,∴C(0,2),
    ∵抛物线过点A(-1,0),B(4,0)
    因此可设抛物线的解析式为
    将C点(0,2)代入得:,即
    ∴抛物线的解析式为
    (2)如图2,

    当时,则P1(,2),
    当 时,
    ∴OC∥l,
    ∴,
    ∴P2H=·OC=5,
    ∴P2 (,5)
    因此P点的坐标为(,2)或(,5).
    (3)存在.
    假设直线l上存在点M,抛物线上存在点N,使得以A、O、M、N为顶点的四边形为平行四边形.
    如图3,

    当平行四边形是平行四边形时,M(,),(,),
    当平行四边形AONM是平行四边形时,M(,),N(,),
    如图4,当四边形AMON为平行四边形时,MN与OA互相平分,此时可设M(,m),则

    ∵点N在抛物线上,
    ∴-m=-·(-+1)( --4)=-,
    ∴m=,
    此时M(,), N(-,-).
    综上所述,M(,),N(,)或M(,),N(,) 或 M(,), N(-,-).
    点睛:属于二次函数综合题,考查相似三角形的判定与性质,待定系数法求二次函数解析式等,注意分类讨论的思想方法在数学中的应用.
    19、(1)32;(2)x<﹣4或0<x<4;(3)点P的坐标是P(﹣7+,14+2);或P(7+,﹣14+2).
    【解析】
    分析:(1)先将x=4代入正比例函数y=2x,可得出y=8,求得点A(4,8),再根据点A与B关于原点对称,得出B点坐标,即可得出k的值;
    (2)正比例函数的值小于反比例函数的值即正比例函数的图象在反比例函数的图象下方,根据图形可知在交点的右边正比例函数的值小于反比例函数的值.
    (3)由于双曲线是关于原点的中心对称图形,因此以A、B、P、Q为顶点的四边形应该是平行四边形,那么△POA的面积就应该是四边形面积的四分之一即1.可根据双曲线的解析式设出P点的坐标,然后表示出△POA的面积,由于△POA的面积为1,由此可得出关于P点横坐标的方程,即可求出P点的坐标.
    详解:(1)∵点A在正比例函数y=2x上,
    ∴把x=4代入正比例函数y=2x,
    解得y=8,∴点A(4,8),
    把点A(4,8)代入反比例函数y=,得k=32,
    (2)∵点A与B关于原点对称,
    ∴B点坐标为(﹣4,﹣8),
    由交点坐标,根据图象直接写出正比例函数值小于反比例函数值时x的取值范围,x<﹣8或0<x<8;
    (3)∵反比例函数图象是关于原点O的中心对称图形,
    ∴OP=OQ,OA=OB,
    ∴四边形APBQ是平行四边形,
    ∴S△POA=S平行四边形APBQ×=×224=1,
    设点P的横坐标为m(m>0且m≠4),
    得P(m,),
    过点P、A分别做x轴的垂线,垂足为E、F,
    ∵点P、A在双曲线上,
    ∴S△POE=S△AOF=16,
    若0<m<4,如图,
    ∵S△POE+S梯形PEFA=S△POA+S△AOF,
    ∴S梯形PEFA=S△POA=1.
    ∴(8+)•(4﹣m)=1.
    ∴m1=﹣7+3,m2=﹣7﹣3(舍去),
    ∴P(﹣7+3,16+);
    若m>4,如图,
    ∵S△AOF+S梯形AFEP=S△AOP+S△POE,
    ∴S梯形PEFA=S△POA=1.
    ∴×(8+)•(m﹣4)=1,
    解得m1=7+3,m2=7﹣3(舍去),
    ∴P(7+3,﹣16+).
    ∴点P的坐标是P(﹣7+3,16+);或P(7+3,﹣16+).

    点睛:本题考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.利用数形结合的思想,求得三角形的面积.
    20、(1)详见解析;(2)①67.5°;②90°.
    【解析】
    (1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;
    (2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;
    ②根据四边形BFDP是正方形,可以求得∠DAE的度数.
    【详解】
    (1)证明:连接OD,如图所示,

    ∵射线DC切⊙O于点D,
    ∴OD⊥CD,
    即∠ODF=90°,
    ∵∠AED=45°,
    ∴∠AOD=2∠AED=90°,
    ∴∠ODF=∠AOD,
    ∴CD∥AB;
    (2)①连接AF与DP交于点G,如图所示,

    ∵四边形ADFP是菱形,∠AED=45°,OA=OD,
    ∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,
    ∴∠AGE=90°,∠DAO=45°,
    ∴∠EAG=45°,∠DAG=∠PEG=22.5°,
    ∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,
    故答案为:67.5°;
    ②∵四边形BFDP是正方形,
    ∴BF=FD=DP=PB,
    ∠DPB=∠PBF=∠BFD=∠FDP=90°,
    ∴此时点P与点O重合,
    ∴此时DE是直径,
    ∴∠EAD=90°,
    故答案为:90°.
    【点睛】
    本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.
    21、(1)证明见解析;(2) .();(3) .
    【解析】
    分析:(1)先判断出∠ABM=∠DOM,进而判断出△OAC≌△BAM,即可得出结论;
    (2)先判断出BD=DM,进而得出,进而得出AE=,再判断出,即可得出结论;
    (3)分三种情况利用勾股定理或判断出不存在,即可得出结论.
    详解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.
    ∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.
    ∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,
    ∴AC=AM.
    (2)如图2,过点D作DE∥AB,交OM于点E.
    ∵OB=OM,OD⊥BM,∴BD=DM.
    ∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.
    ∵DE∥AB,∴,
    ∴.()
    (3)(i) 当OA=OC时.∵.在Rt△ODM中,.
    ∵.解得,或(舍).
    (ii)当AO=AC时,则∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此种情况不存在.
    (ⅲ)当CO=CA时,则∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此种情况不存在.
    即:当△OAC为等腰三角形时,x的值为.

    点睛:本题是圆的综合题,主要考查了相似三角形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y关于x的函数关系式是解答本题的关键.
    22、(1)反比例函数解析式为y=﹣,一次函数的解析式为y=﹣x﹣1;(1)6;(3)x<﹣4或0<x<1.
    【解析】
    试题分析:(1)先把点A的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B的坐标代入反比例函数解析式,即可求出n=1,然后利用待定系数法确定一次函数的解析式;
    (1)先求出直线y=﹣x﹣1与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;
    (3)观察函数图象得到当x<﹣4或0<x<1时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.
    试题解析:(1)把A(﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函数解析式为,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=1,把A(﹣4,1)和B(1,﹣4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=﹣x﹣1;
    (1)y=﹣x﹣1中,令y=0,则x=﹣1,即直线y=﹣x﹣1与x轴交于点C(﹣1,0),∴S△AOB=S△AOC+S△BOC=×1×1+×1×4=6;
    (3)由图可得,不等式的解集为:x<﹣4或0<x<1.

    考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.
    23、(1)点B的坐标为(1,0).
    (2)①点P的坐标为(4,21)或(-4,5).
    ②线段QD长度的最大值为.
    【解析】
    (1)由抛物线的对称性直接得点B的坐标.
    (2)①用待定系数法求出抛物线的解析式,从而可得点C的坐标,得到,设出点P 的坐标,根据列式求解即可求得点P的坐标.
    ②用待定系数法求出直线AC的解析式,由点Q在线段AC上,可设点Q的坐标为(q,-q-3),从而由QD⊥x轴交抛物线于点D,得点D的坐标为(q,q2+2q-3),从而线段QD等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.
    【详解】
    解:(1)∵A、B两点关于对称轴对称 ,且A点的坐标为(-3,0),
    ∴点B的坐标为(1,0).
    (2)①∵抛物线,对称轴为,经过点A(-3,0),
    ∴,解得.
    ∴抛物线的解析式为.
    ∴B点的坐标为(0,-3).∴OB=1,OC=3.∴.
    设点P的坐标为(p,p2+2p-3),则.
    ∵,∴,解得.
    当时;当时,,
    ∴点P的坐标为(4,21)或(-4,5).
    ②设直线AC的解析式为,将点A,C的坐标代入,得:
    ,解得:.
    ∴直线AC的解析式为.
    ∵点Q在线段AC上,∴设点Q的坐标为(q,-q-3).
    又∵QD⊥x轴交抛物线于点D,∴点D的坐标为(q,q2+2q-3).
    ∴.
    ∵,
    ∴线段QD长度的最大值为.
    24、 (1) CF=1;(2)y=,0≤x≤1;(3)CM=2﹣.
    【解析】
    (1)如图1中,作AH⊥BC于H.首先证明四边形AHCD是正方形,求出BC、MC的长,利用平行线分线段成比例定理即可解决问题;
    (2)在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,由△EAM∽△EBA,可得,推出AE2=EM•EB,由此构建函数关系式即可解决问题;
    (3)如图2中,作AH⊥BC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG.想办法证明CM=CN,MN=DN+HM即可解决问题;
    【详解】
    解:(1)如图1中,作AH⊥BC于H.

    ∵CD⊥BC,AD∥BC,
    ∴∠BCD=∠D=∠AHC=90°,
    ∴四边形AHCD是矩形,
    ∵AD=DC=1,
    ∴四边形AHCD是正方形,
    ∴AH=CH=CD=1,
    ∵∠B=45°,
    ∴AH=BH=1,BC=2,
    ∵CM=BC=,CM∥AD,
    ∴=,
    ∴=,
    ∴CF=1.
    (2)如图1中,在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,
    ∵∠AEM=∠AEB,∠EAM=∠B,
    ∴△EAM∽△EBA,
    ∴=,
    ∴AE2=EM•EB,
    ∴1+(1+y)2=(x+y)(y+2),
    ∴y=,
    ∵2﹣2x≥0,
    ∴0≤x≤1.
    (3)如图2中,作AH⊥BC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG.

    则△ADN≌△AHG,△MAN≌△MAG,
    ∴MN=MG=HM+GH=HM+DN,
    ∵△ABM∽△EFN,
    ∴∠EFN=∠B=45°,
    ∴CF=CE,
    ∵四边形AHCD是正方形,
    ∴CH=CD=AH=AD,EH=DF,∠AHE=∠D=90°,
    ∴△AHE≌△ADF,
    ∴∠AEH=∠AFD,
    ∵∠AEH=∠DAN,∠AFD=∠HAM,
    ∴∠HAM=∠DAN,
    ∴△ADN≌△AHM,
    ∴DN=HM,设DN=HM=x,则MN=2x,CN=CM=x,
    ∴x+x=1,
    ∴x=﹣1,
    ∴CM=2﹣.
    【点睛】
    本题考查了正方形的判定与性质,平行线分线段成比例定理,勾股定理,相似三角形的判定与性质,全等三角形的判定与性质.熟练运用平行线分线段成比例定理是解(1)的关键;证明△EAM∽△EBA是解(2)的关键;综合运用全等三角形的判定与性质是解(3)的关键.

    相关试卷

    北京市第八中学2021-2022学年毕业升学考试模拟卷数学卷含解析:

    这是一份北京市第八中学2021-2022学年毕业升学考试模拟卷数学卷含解析,共23页。试卷主要包含了小手盖住的点的坐标可能为等内容,欢迎下载使用。

    北京市龙文教育重点名校2021-2022学年毕业升学考试模拟卷数学卷含解析:

    这是一份北京市龙文教育重点名校2021-2022学年毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列命题中假命题是等内容,欢迎下载使用。

    2022届枣庄市毕业升学考试模拟卷数学卷含解析:

    这是一份2022届枣庄市毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了下列图形是轴对称图形的有等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map