福建省长泰一中学、华安一中学、龙海二中学2021-2022学年初中数学毕业考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是( )
A. B.
C. D.
2.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )
A.众数 B.方差 C.平均数 D.中位数
3.如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=( )
A.23° B.46° C.67° D.78°
4.在Rt△ABC中,∠C=90°,如果AC=2,cosA=,那么AB的长是( )
A.3 B. C. D.
5.弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2016年度文明刨建工作进行认真评分,结果如下表:
人数
2
3
4
1
分数
80
85
90
95
则得分的众数和中位数分别是( )
A.90和87.5 B.95和85 C.90和85 D.85和87.5
6.a、b是实数,点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,则( )
A.a<b<0 B.b<a<0 C.a<0<b D.b<0<a
7.用加减法解方程组时,若要求消去,则应( )
A. B. C. D.
8.已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是( )
A.k≤2且k≠1 B.k<2且k≠1
C.k=2 D.k=2或1
9.若关于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一个根为1,则m的值为
A.1 B.3 C.0 D.1或3
10.下列图形中,既是中心对称图形,又是轴对称图形的是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.分解因式:x2y﹣y=_____.
12.在矩形ABCD中,AB=4, BC=3, 点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的处,则AP的长为__________.
13.甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是__km/h.
14.已知点A(a,y1)、B(b,y2)在反比例函数y=的图象上,如果a<b<0,那么y1与y2的大小关系是:y1__y2;
15.关于x的分式方程有增根,则m的值为__________.
16.如图,正△ABC 的边长为 2,顶点 B、C 在半径为 的圆上,顶点 A在圆内,将正△ABC 绕点 B 逆时针旋转,当点 A 第一次落在圆上时,则点 C 运动的路线长为 (结果保留π);若 A 点落在圆上记做第 1 次旋转,将△ABC 绕点 A 逆时针旋转,当点 C 第一次落在圆上记做第 2 次旋转,再绕 C 将△ABC 逆时针旋转,当点 B 第一次落在圆上,记做第 3 次旋转……,若此旋转下去,当△ABC 完成第 2017 次旋转时,BC 边共回到原来位置 次.
三、解答题(共8题,共72分)
17.(8分)如图,矩形ABCD中,AB=4,AD=5,E为BC上一点,BE∶CE=3∶2,连接AE,点P从点A出发,沿射线AB的方向以每秒1个单位长度的速度匀速运动,过点P作PF∥BC交直线AE于点F.
(1)线段AE=______;
(2)设点P的运动时间为t(s),EF的长度为y,求y关于t的函数关系式,并写出t的取值范围;
(3)当t为何值时,以F为圆心的⊙F恰好与直线AB、BC都相切?并求此时⊙F的半径.
18.(8分)在平面直角坐标系中,关于的一次函数的图象经过点,且平行于直线.
(1)求该一次函数表达式;
(2)若点Q(x,y)是该一次函数图象上的点,且点Q在直线的下方,求x的取值范围.
19.(8分)小林在没有量角器和圆规的情况下,利用刻度尺和一副三角板画出了一个角的平分线,他的作法是这样的:如图:
(1)利用刻度尺在∠AOB的两边OA,OB上分别取OM=ON;
(2)利用两个三角板,分别过点M,N画OM,ON的垂线,交点为P;
(3)画射线OP.
则射线OP为∠AOB的平分线.请写出小林的画法的依据______.
20.(8分)如图1,已知抛物线y=﹣x2+x+与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.
(1)求线段DE的长度;
(2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少;
(3)在(2)问的条件下,将得到的△CFP沿直线AE平移得到△C′F′P′,将△C′F′P′沿C′P′翻折得到△C′P′F″,记在平移过称中,直线F′P′与x轴交于点K,则是否存在这样的点K,使得△F′F″K为等腰三角形?若存在求出OK的值;若不存在,说明理由.
21.(8分) “知识改变命运,科技繁荣祖国”.在举办一届全市科技运动会上.下图为某校2017年参加科技运动会航模比赛(包括空模、海模、车模、建模四个类别)的参赛人数统计图:
(1)该校参加航模比赛的总人数是 人,空模所在扇形的圆心角的度数是 ;
(2)并把条形统计图补充完整;
(3)从全市中小学参加航模比赛选手中随机抽取80人,其中有32人获奖.今年全市中小学参加航模比赛人数共有2500人,请你估算今年参加航模比赛的获奖人数约是多少人?
22.(10分)某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.
(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?
(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)
23.(12分)如图,一次函数y=﹣x+的图象与反比例函数y=(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为1.
(1)求反比例函数的解析式;
(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.
24.进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:
通过这段对话,请你求出该地驻军原来每天加固的米数.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
分析:根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.
详解:该几何体的左视图是:
故选A.
点睛:本题考查了学生的思考能力和对几何体三种视图的空间想象能力.
2、D
【解析】
根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.
故本题选:D.
【点睛】
本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.
3、B
【解析】
根据圆的半径相等可知AB=AC,由等边对等角求出∠ACB,再由平行得内错角相等,最后由平角180°可求出∠1.
【详解】
根据题意得:AB=AC,
∴∠ACB=∠ABC=67°,
∵直线l1∥l2,
∴∠2=∠ABC=67°,
∵∠1+∠ACB+∠2=180°,
∴∠ACB=180°-∠1-∠ACB=180°-67°-67°=46º.
故选B.
【点睛】
本题考查等腰三角形的性质,平行线的性质,熟练根据这些性质得到角之间的关系是关键.
4、A
【解析】
根据锐角三角函数的性质,可知cosA==,然后根据AC=2,解方程可求得AB=3.
故选A.
点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值cosA=,然后带入数值即可求解.
5、A
【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.
解:在这一组数据中90是出现次数最多的,故众数是90;
排序后处于中间位置的那个数,那么由中位数的定义可知,这组数据的中位数是87.5;
故选:A.
“点睛”本题考查了众数、中位数的知识,掌握各知识点的概念是解答本题的关键.注意中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
6、A
【解析】
解:∵,∴反比例函数的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数的图象上,∴a<b<0,故选A.
7、C
【解析】
利用加减消元法消去y即可.
【详解】
用加减法解方程组时,若要求消去y,则应①×5+②×3,
故选C
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
8、D
【解析】
当k+1=0时,函数为一次函数必与x轴有一个交点;当k+1≠0时,函数为二次函数,根据条件可知其判别式为0,可求得k的值.
【详解】
当k-1=0,即k=1时,函数为y=-4x+4,与x轴只有一个交点;
当k-1≠0,即k≠1时,由函数与x轴只有一个交点可知,
∴△=(-4)2-4(k-1)×4=0,
解得k=2,
综上可知k的值为1或2,
故选D.
【点睛】
本题主要考查函数与x轴的交点,掌握二次函数与x轴只有一个交点的条件是解题的关键,解决本题时注意考虑一次函数和二次函数两种情况.
9、B
【解析】
直接把x=1代入已知方程即可得到关于m的方程,解方程即可求出m的值.
【详解】
∵x=1是方程(m﹣1)x2+x+m2﹣5m+3=0的一个根,
∴(m﹣1)+1+m2﹣5m+3=0,
∴m2﹣4m+3=0,
∴m=1或m=3,
但当m=1时方程的二次项系数为0,
∴m=3.
故答案选B.
【点睛】
本题考查了一元二次方程的解,解题的关键是熟练的掌握一元二次方程的运算.
10、C
【解析】
根据中心对称图形和轴对称图形对各选项分析判断即可得解.
【详解】
A、不是轴对称图形,是中心对称图形,故本选项错误;
B、不是中心对称图形,是轴对称图形,故本选项错误;
C、既是中心对称图形,又是轴对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误.
故选C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、y(x+1)(x﹣1)
【解析】
观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2-1符合平方差公式,利用平方差公式继续分解可得.
【详解】
解:x2y﹣y
=y(x2﹣1)
=y(x+1)(x﹣1).
故答案为:y(x+1)(x﹣1).
【点睛】
本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
12、或
【解析】
①点A落在矩形对角线BD上,如图1,
∵AB=4,BC=3,
∴BD=5,
根据折叠的性质,AD=A′D=3,AP=A′P,∠A=∠PA′D=90°,
∴BA′=2,设AP=x,则BP=4﹣x,∵BP2=BA′2+PA′2,
∴(4﹣x)2=x2+22,
解得:x=,∴AP=;
②点A落在矩形对角线AC上,如图2,根据折叠的性质可知DP⊥AC,
∴△DAP∽△ABC,
∴,
∴AP===.
故答案为或.
13、3.6
【解析】
分析:根据题意,甲的速度为6km/h,乙出发后2.5小时两人相遇,可以用方程思想解决问题.
详解:由题意,甲速度为6km/h.当甲开始运动时相距36km,两小时后,乙开始运动,经过2.5小时两人相遇.
设乙的速度为xkm/h
4.5×6+2.5x=36
解得x=3.6
故答案为3.6
点睛:本题为一次函数实际应用问题,考查一次函数图象在实际背景下所代表的意义.解答这类问题时,也可以通过构造方程解决问题.
14、>
【解析】
根据反比例函数的性质求解.
【详解】
反比例函数y=的图象分布在第一、三象限,在每一象限y随x的增大而减小,
而a<b<0,
所以y1>y2
故答案为:>
【点睛】
本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.
15、1.
【解析】
去分母得:7x+5(x-1)=2m-1,
因为分式方程有增根,所以x-1=0,所以x=1,
把x=1代入7x+5(x-1)=2m-1,得:7=2m-1,
解得:m=1,
故答案为1.
16、,1.
【解析】
首先连接OA′、OB、OC,再求出∠C′BC的大小,进而利用弧长公式问题即可解决.因为△ABC是三边在正方形CBA′C″上,BC边每12次回到原来位置,2017÷12=1.08,推出当△ABC完成第2017次旋转时,BC边共回到原来位置1次.
【详解】
如图,连接OA′、OB、OC.
∵OB=OC=,BC=2,
∴△OBC是等腰直角三角形,
∴∠OBC=45°;
同理可证:∠OBA′=45°,
∴∠A′BC=90°;
∵∠ABC=60°,
∴∠A′BA=90°-60°=30°,
∴∠C′BC=∠A′BA=30°,
∴当点A第一次落在圆上时,则点C运动的路线长为:.
∵△ABC是三边在正方形CBA′C″上,BC边每12次回到原来位置,
2017÷12=1.08,
∴当△ABC完成第2017次旋转时,BC边共回到原来位置1次,
故答案为:,1.
【点睛】
本题考查轨迹、等边三角形的性质、旋转变换、规律问题等知识,解题的关键是循环利用数形结合的思想解决问题,循环从特殊到一般的探究方法,所以中考填空题中的压轴题.
三、解答题(共8题,共72分)
17、(1)5;(2);(3)时,半径PF=;t=16,半径PF=12.
【解析】
(1)由矩形性质知BC=AD=5,根据BE:CE=3:2知BE=3,利用勾股定理可得AE=5;
(2)由PF∥BE知,据此求得AF=t,再分0≤t≤4和t>4两种情况分别求出EF即可得;
(3)由以点F为圆心的⊙F恰好与直线AB、BC相切时PF=PG,再分t=0或t=4、0<t<4、t>4这三种情况分别求解可得
【详解】
(1)∵四边形ABCD为矩形,
∴BC=AD=5,
∵BE∶CE=3∶2,
则BE=3,CE=2,
∴AE===5.
(2)如图1,
当点P在线段AB上运动时,即0≤t≤4,
∵PF∥BE,
∴=,即=,
∴AF=t,
则EF=AE-AF=5-t,即y=5-t(0≤t≤4);
如图2,
当点P在射线AB上运动时,即t>4,
此时,EF=AF-AE=t-5,即y=t-5(t>4);
综上,;
(3)以点F为圆心的⊙F恰好与直线AB、BC相切时,PF=FG,分以下三种情况:
①当t=0或t=4时,显然符合条件的⊙F不存在;
②当0<t<4时,如解图1,作FG⊥BC于点G,
则FG=BP=4-t,
∵PF∥BC,
∴△APF∽△ABE,
∴=,即=,
∴PF=t,
由4-t=t可得t=,
则此时⊙F的半径PF=;
③当t>4时,如解图2,同理可得FG=t-4,PF=t,
由t-4=t可得t=16,
则此时⊙F的半径PF=12.
【点睛】
本题主要考查了矩形的性质,勾股定理,动点的函数为题,切线的性质,相似三角形的判定与性质及分类讨论的数学思想.解题的关键是熟练掌握切线的性质、矩形的性质及相似三角形的判定与性质.
18、(1);(2).
【解析】
(1)由题意可设该一次函数的解析式为:,将点M(4,7)代入所设解析式求出b的值即可得到一次函数的解析式;
(2)根据直线上的点Q(x,y)在直线的下方可得2x-1<3x+2,解不等式即得结果.
【详解】
解:(1)∵一次函数平行于直线,∴可设该一次函数的解析式为:,
∵直线过点M(4,7),
∴8+b=7,解得b=-1,
∴一次函数的解析式为:y=2x-1;
(2)∵点Q(x,y)是该一次函数图象上的点,∴y=2x-1,
又∵点Q在直线的下方,如图,
∴2x-1<3x+2,
解得x>-3.
【点睛】
本题考查了待定系数法求一次函数的解析式以及一次函数与不等式的关系,属于常考题型,熟练掌握待定系数法与一次函数与不等式的关系是解题的关键.
19、斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线
【解析】
利用“HL”判断Rt△OPM≌Rt△OPN,从而得到∠POM=∠PON.
【详解】
有画法得OM=ON,∠OMP=∠ONP=90°,则可判定Rt△OPM≌Rt△OPN,
所以∠POM=∠PON,
即射线OP为∠AOB的平分线.
故答案为斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线.
【点睛】
本题考查了作图−基本作图,解题关键在于熟练掌握基本作图作一条线段等于已知线段.
20、 (1)2 ;(2) ;(3)见解析.
【解析】
分析:(1)根据解析式求得C的坐标,进而求得D的坐标,即可求得DH的长度,令y=0,求得A,B的坐标,然后证得△ACO∽△EAH,根据对应边成比例求得EH的长,进继而求得DE的长;
(2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(-2,-),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,根据点的坐标求得直线GN的解析式:y=x-;直线AE的解析式:y= -x-,过点M作y轴的平行线交FH于点Q,设点M(m,-m²+m+),则Q(m,m-),根据S△MFP=S△MQF+S△MQP,得出S△MFP= -m²+m+,根据解析式即可求得,△MPF面积的最大值;
(3)由(2)可知C(0,),F(0,),P(2,),求得CF=,CP=,进而得出△CFP为等边三角形,边长为,翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,然后分三种情况讨论求得即可.
本题解析:(1)对于抛物线y=﹣x2+x+,
令x=0,得y=,即C(0,),D(2,),
∴DH=,
令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,
∴A(﹣1,0),B(3,0),
∵AE⊥AC,EH⊥AH,
∴△ACO∽△EAH,
∴=,即=,
解得:EH=,
则DE=2;
(2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(﹣2,﹣),
连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,
直线GN的解析式:y=x﹣;直线AE的解析式:y=﹣x﹣,
联立得:F (0,﹣),P(2,),
过点M作y轴的平行线交FH于点Q,
设点M(m,﹣m2+m+),则Q(m, m﹣),(0<m<2);
∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,
∵对称轴为:直线m=<2,开口向下,
∴m=时,△MPF面积有最大值: ;
(3)由(2)可知C(0,),F(0,),P(2,),
∴CF=,CP==,
∵OC=,OA=1,
∴∠OCA=30°,
∵FC=FG,
∴∠OCA=∠FGA=30°,
∴∠CFP=60°,
∴△CFP为等边三角形,边长为,
翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,
1)当K F′=KF″时,如图3,
点K在F′F″的垂直平分线上,所以K与B重合,坐标为(3,0),
∴OK=3;
2)当F′F″=F′K时,如图4,
∴F′F″=F′K=4,
∵FP的解析式为:y=x﹣,
∴在平移过程中,F′K与x轴的夹角为30°,
∵∠OAF=30°,
∴F′K=F′A
∴AK=4
∴OK=4﹣1或者4+1;
3)当F″F′=F″K时,如图5,
∵在平移过程中,F″F′始终与x轴夹角为60°,
∵∠OAF=30°,
∴∠AF′F″=90°,
∵F″F′=F″K=4,
∴AF″=8,
∴AK=12,
∴OK=1,
综上所述:OK=3,4﹣1,4+1或者1.
点睛:本题是二次函数的综合题,考查了二次函数的交点和待定系数法求二次函数的解析式以及最值问题,考查了三角形相似的判定与性质,等边三角形的判定与性质,等腰三角形的性质等,分类讨论的思想是解题的关键.
21、(1)24,120°;(2)见解析;(3)1000人
【解析】
(1)由建模的人数除以占的百分比,求出调查的总人数即可,再算空模人数,即可知道空模所占百分比,从而算出对应的圆心角度数;(2)根据空模人数然后补全条形统计图;(3)根据随机取出人数获奖的人数比,即可得到结果.
【详解】
解:(1)该校参加航模比赛的总人数是6÷25%=24(人),
则参加空模人数为24﹣(6+4+6)=8(人),
∴空模所在扇形的圆心角的度数是360°×=120°,
故答案为:24,120°;
(2)补全条形统计图如下:
(3)估算今年参加航模比赛的获奖人数约是2500×=1000(人).
【点睛】
此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.
22、 (1) 商店购进甲种商品40件,购进乙种商品60件;(2) 应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
【解析】
(1)设购进甲、乙两种商品分别为x件与y件,根据甲种商品件数+乙种商品件数=100,甲商品的总进价+乙种商品的总进价=2700,列出关于x与y的方程组,求出方程组的解即可得到x与y的值,得到购进甲、乙两种商品的件数;
(2)设商店购进甲种商品a件,则购进乙种商品(100-a)件,根据甲商品的总进价+乙种商品的总进价小于等于3100,甲商品的总利润+乙商品的总利润大于等于890列出关于a的不等式组,求出不等式组的解集,得到a的取值范围,根据a为正整数得出a的值,再表示总利润W,发现W与a成一次函数关系式,且为减函数,故a取最小值时,W最大,即可求出所求的进货方案与最大利润.
【详解】
(1)设购进甲种商品x件,购进乙商品y件,
根据题意得:
,
解得:,
答:商店购进甲种商品40件,购进乙种商品60件;
(2)设商店购进甲种商品a件,则购进乙种商品(100﹣a)件,
根据题意列得:
,
解得:20≤a≤22,
∵总利润W=5a+10(100﹣a)=﹣5a+1000,W是关于a的一次函数,W随a的增大而减小,
∴当a=20时,W有最大值,此时W=900,且100﹣20=80,
答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
【点睛】
此题考查了二元一次方程组的应用,一次函数的性质,以及一元一次不等式组的应用,弄清题中的等量关系及不等关系是解本题的关键.
23、(1) (2)(0,)
【解析】
(1)根据反比例函数比例系数k的几何意义得出|k|=1,进而得到反比例函数的解析式;
(2)作点A关于y轴的对称点A′,连接A′B,交y轴于点P,得到PA+PB最小时,点P的位置,根据两点间的距离公式求出最小值A′B的长;利用待定系数法求出直线A′B的解析式,得到它与y轴的交点,即点P的坐标.
【详解】
(1)∵反比例函数 y= =(k>0)的图象过点 A,过 A 点作 x 轴的垂线,垂足为 M,
∴|k|=1,
∵k>0,
∴k=2,
故反比例函数的解析式为:y=;
(2)作点 A 关于 y 轴的对称点 A′,连接 A′B,交 y 轴于点 P,则 PA+PB 最小.
由,解得,或,
∴A(1,2),B(4,),
∴A′(﹣1,2),最小值 A′B= =,
设直线 A′B 的解析式为 y=mx+n,
则 ,解得,
∴直线 A′B 的解析式为 y= ,
∴x=0 时,y= ,
∴P 点坐标为(0,).
【点睛】
本题考查的是反比例函数图象与一次函数图象的交点问题以及最短路线问题,解题的关键是确定PA+PB最小时,点P的位置,灵活运用数形结合思想求出有关点的坐标和图象的解析式是解题的关键.
24、300米
【解析】
解:设原来每天加固x米,根据题意,得
.
去分母,得 1200+4200=18x(或18x=5400)
解得.
检验:当时,(或分母不等于0).
∴是原方程的解.
答:该地驻军原来每天加固300米.
福建省长泰一中学、华安一中学、龙海二中学2023-2024学年九上数学期末考试试题含答案: 这是一份福建省长泰一中学、华安一中学、龙海二中学2023-2024学年九上数学期末考试试题含答案,共7页。试卷主要包含了下列说法中正确的是,如果两个相似三角形的面积比是1等内容,欢迎下载使用。
福建省长泰一中学、华安一中学、龙海二中学2022-2023学年中考数学模拟试题含解析: 这是一份福建省长泰一中学、华安一中学、龙海二中学2022-2023学年中考数学模拟试题含解析,共16页。
福建省长泰一中学、华安一中学、龙海二中学2022年中考押题数学预测卷含解析: 这是一份福建省长泰一中学、华安一中学、龙海二中学2022年中考押题数学预测卷含解析,共17页。试卷主要包含了在中,,,,则的值是等内容,欢迎下载使用。