![甘肃省省定西市市级名校2022年中考一模数学试题含解析第1页](http://www.enxinlong.com/img-preview/2/3/13127195/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![甘肃省省定西市市级名校2022年中考一模数学试题含解析第2页](http://www.enxinlong.com/img-preview/2/3/13127195/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![甘肃省省定西市市级名校2022年中考一模数学试题含解析第3页](http://www.enxinlong.com/img-preview/2/3/13127195/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
甘肃省省定西市市级名校2022年中考一模数学试题含解析
展开这是一份甘肃省省定西市市级名校2022年中考一模数学试题含解析,共23页。试卷主要包含了二次函数y=ax2+bx+c等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.的算术平方根是( )
A.4 B.±4 C.2 D.±2
2.下列二次根式,最简二次根式是( )
A. B. C. D.
3.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38,52,47,46,50,50,61,72,45,48,则这10名女生仰卧起坐个数不少于50个的频率为( )
A.0.3 B.0.4 C.0.5 D.0.6
4.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于( )
A.6 B.6 C.3 D.9
5.若(x﹣1)0=1成立,则x的取值范围是( )
A.x=﹣1 B.x=1 C.x≠0 D.x≠1
6.如图所示的几何体,上下部分均为圆柱体,其左视图是( )
A. B. C. D.
7.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是( )
A.13 B.14 C.15 D.16
8.在0,﹣2,3,四个数中,最小的数是( )
A.0 B.﹣2 C.3 D.
9.在武汉市举办的“读好书、讲礼仪”活动中,某学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图,根据图中信息,该班平均每人捐书的册数是( )
A.3 B.3.2 C.4 D.4.5
10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0,②当﹣1≤x≤3时,y<0;③3a+c=0;④若(x1,y1)(x2、y2)在函数图象上,当0<x1<x2时,y1<y2,其中正确的是( )
A.①②④ B.①③ C.①②③ D.①③④
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在平面直角坐标系中,已知,A(2,0),C(0,﹣1),若P为线段OA上一动点,则CP+AP的最小值为_____.
12.一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C3……在x轴上,已知正方形A1B1C1D1的顶点C1的坐标是(﹣,0),∠B1C1O=60°,B1C1∥B2C2∥B3C3……则正方形A2018B2018C2018D2018的顶点D2018纵坐标是_____.
13.在矩形ABCD中,AB=4, BC=3, 点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的处,则AP的长为__________.
14.我们知道:1+3=4,1+3+5=9,1+3+5+7=16,…,观察下面的一列数:-1,2,,-3, 4,-5,6…,将这些数排列成如图的形式,根据其规律猜想,第20行从左到右第3个数是 .
15.反比例函数y=的图象是双曲线,在每一个象限内,y随x的增大而减小,若点A(–3,y1),B(–1,y2),C(2,y3)都在该双曲线上,则y1、y2、y3的大小关系为__________.(用“<”连接)
16.已知且,则=__________.
三、解答题(共8题,共72分)
17.(8分)如图,矩形ABCD绕点C顺时针旋转90°后得到矩形CEFG,连接DG交EF于H,连接AF交DG于M;
(1)求证:AM=FM;
(2)若∠AMD=a.求证:=cosα.
18.(8分)如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.CD与BE相等?若相等,请证明;若不相等,请说明理由;若∠BAC=90°,求证:BF1+CD1=FD1.
19.(8分)如图,已知⊙O中,AB为弦,直线PO交⊙O于点M、N,PO⊥AB于C,过点B作直径BD,连接AD、BM、AP.
(1)求证:PM∥AD;
(2)若∠BAP=2∠M,求证:PA是⊙O的切线;
(3)若AD=6,tan∠M=,求⊙O的直径.
20.(8分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
(1)求商场经营该商品原来一天可获利润多少元?
(2)设后来该商品每件降价x元,商场一天可获利润y元.
①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.
21.(8分)“分组合作学习”已成为推动课堂教学改革,打造自主高效课堂的重要措施.某中学从全校学生中随机抽取部分学生对“分组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:
请结合图中信息解答下列问题:求出随机抽取调查的学生人数;补全分组后学生学习兴趣的条形统计图; 分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.
22.(10分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)点D是抛物线上的一动点,是否存在点D,使得tan∠DCB=tan∠ACO.若存在,请求出点D的坐标,若不存在,说明理由.
23.(12分)如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.
(1)“抛物线三角形”一定是 三角形;
(2)若抛物线的“抛物线三角形”是等腰直角三角形,求的值;
(3)如图,△是抛物线的“抛物线三角形”,是否存在以原点为对称中心的矩形?若存在,求出过三点的抛物线的表达式;若不存在,说明理由.
24.某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表,请根据图表中提供的信息解答下列问题:
AQI指数
质量等级
天数(天)
0-50
优
m
51-100
良
44
101-150
轻度污染
n
151-200
中度污染
4
201-300
重度污染
2
300以上
严重污染
2
(1)统计表中m= ,n= ,扇形统计图中,空气质量等级为“良”的天数占 %;
(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
先求出的值,然后再利用算术平方根定义计算即可得到结果.
【详解】
=4,
4的算术平方根是2,
所以的算术平方根是2,
故选C.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.
2、C
【解析】
根据最简二次根式的定义逐个判断即可.
【详解】
A.,不是最简二次根式,故本选项不符合题意;
B.,不是最简二次根式,故本选项不符合题意;
C.是最简二次根式,故本选项符合题意;
D.,不是最简二次根式,故本选项不符合题意.
故选C.
【点睛】
本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解答此题的关键.
3、C
【解析】
用仰卧起坐个数不少于10个的频数除以女生总人数10计算即可得解.
【详解】
仰卧起坐个数不少于10个的有12、10、10、61、72共1个,
所以,频率==0.1.
故选C.
【点睛】
本题考查了频数与频率,频率=.
4、B
【解析】
连接DF,根据垂径定理得到 , 得到∠DCF=∠EOD=30°,根据圆周角定理、余弦的定义计算即可.
【详解】
解:连接DF,
∵直径CD过弦EF的中点G,
∴,
∴∠DCF=∠EOD=30°,
∵CD是⊙O的直径,
∴∠CFD=90°,
∴CF=CD•cos∠DCF=12× = ,
故选B.
【点睛】
本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键.
5、D
【解析】
试题解析:由题意可知:x-1≠0,
x≠1
故选D.
6、C
【解析】
试题分析:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选C.
考点:简单组合体的三视图.
7、C
【解析】
解:如图所示,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、I.
因为六边形ABCDEF的六个角都是120°,
所以六边形ABCDEF的每一个外角的度数都是60°.
所以都是等边三角形.
所以
所以六边形的周长为3+1+4+2+2+3=15;
故选C.
8、B
【解析】
根据实数比较大小的法则进行比较即可.
【详解】
∵在这四个数中3>0,>0,-2<0,
∴-2最小.
故选B.
【点睛】
本题考查的是实数的大小比较,即正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.
9、B
【解析】七年级(1)班捐献图书的同学人数为9÷18%=50人,捐献4册的人数为50×30%=15人,捐献3册的人数为50-6-9-15-8=12人,所以该班平均每人捐书的册数为(6+9×2+12×3+15×4+8×5)÷50=3.2册,故选B.
10、B
【解析】
∵函数图象的对称轴为:x=-==1,∴b=﹣2a,即2a+b=0,①正确;
由图象可知,当﹣1<x<3时,y<0,②错误;
由图象可知,当x=1时,y=0,∴a﹣b+c=0,
∵b=﹣2a,∴3a+c=0,③正确;
∵抛物线的对称轴为x=1,开口方向向上,
∴若(x1,y1)、(x2,y2)在函数图象上,当1<x1<x2时,y1<y2;当x1<x2<1时,y1>y2;
故④错误;
故选B.
点睛:本题主要考查二次函数的相关知识,解题的关键是:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
可以取一点D(0,1),连接AD,作CN⊥AD于点N,PM⊥AD于点M,根据勾股定理可得AD=3,证明△APM∽△ADO得,PM=AP.当CP⊥AD时,CP+AP=CP+PM的值最小,最小值为CN的长.
【详解】
如图,
取一点D(0,1),连接AD,作CN⊥AD于点N,PM⊥AD于点M,
在Rt△AOD中,
∵OA=2,OD=1,
∴AD==3,
∵∠PAM=∠DAO,∠AMP=∠AOD=90°,
∴△APM∽△ADO,
∴,
即,
∴PM=AP,
∴PC+AP=PC+PM,
∴当CP⊥AD时,CP+AP=CP+PM的值最小,最小值为CN的长.
∵△CND∽△AOD,
∴,
即
∴CN=.
所以CP+AP的最小值为.
故答案为:.
【点睛】
此题考查勾股定理,三角形相似的判定及性质,最短路径问题,如何找到AP的等量线段与线段CP相加是解题的关键,由此利用勾股定理、相似三角形做辅助线得到垂线段PM,使问题得解.
12、×()2
【解析】
利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.
【详解】
解:∵∠B1C1O=60°,C1O=,
∴B1C1=1,∠D1C1E1=30°,
∵sin∠D1C1E1=,
∴D1E1=,
∵B1C1∥B2C2∥B3C3∥…
∴60°=∠B1C1O=∠B2C2O=∠B3C3O=…
∴B2C2=,B3C3=.
故正方形AnBnCnDn的边长=()n-1.
∴B2018C2018=()2.
∴D2018E2018=×()2,
∴D的纵坐标为×()2,
故答案为×()2.
【点睛】
此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键
13、或
【解析】
①点A落在矩形对角线BD上,如图1,
∵AB=4,BC=3,
∴BD=5,
根据折叠的性质,AD=A′D=3,AP=A′P,∠A=∠PA′D=90°,
∴BA′=2,设AP=x,则BP=4﹣x,∵BP2=BA′2+PA′2,
∴(4﹣x)2=x2+22,
解得:x=,∴AP=;
②点A落在矩形对角线AC上,如图2,根据折叠的性质可知DP⊥AC,
∴△DAP∽△ABC,
∴,
∴AP===.
故答案为或.
14、2
【解析】
先求出19行有多少个数,再加3就等于第20行第三个数是多少.然后根据奇偶性来决定负正.
【详解】
∵1行1个数,
2行3个数,
3行5个数,
4行7个数,
…
19行应有2×19-1=37个数
∴到第19行一共有
1+3+5+7+9+…+37=19×19=1.
第20行第3个数的绝对值是1+3=2.
又2是偶数,
故第20行第3个数是2.
15、y2<y1<y1.
【解析】
先根据反比例函数的增减性判断出2-m的符号,再根据反比例函数的性质判断出此函数图象所在的象限,由各点横坐标的值进行判断即可.
【详解】
∵反比例函数y=的图象是双曲线,在每一个象限内,y随x的增大而减小,
∴2−m>0,∴此函数的图象在一、三象限,∵−1<−1<0,∴0>y1>y2,∵2>0,∴y1>0,
∴y2
本题考查的知识点是反比例函数图像上点的坐标特征,解题的关键是熟练的掌握列反比例函数图像上点的坐标特征.
16、
【解析】
分析:根据相似三角形的面积比等于相似比的平方求解即可.
详解:∵△ABC∽△A′B′C′,
∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,
∴AB:A′B′=1:.
点睛:本题的关键是理解相似三角形的面积比等于相似比的平方.
三、解答题(共8题,共72分)
17、(1)见解析;(2)见解析.
【解析】
(1)由旋转性质可知:AD=FG,DC=CG,可得∠CGD=45°,可求∠FGH=∠FHG=45°,则HF=FG=AD,所以可证△ADM≌△MHF,结论可得.
(2)作FN⊥DG垂足为N,且MF=FG,可得HN=GN,且DM=MH,可证2MN=DG,由第一问可得2MF=AF,由cosα=cos∠FMG=,代入可证结论成立
【详解】
(1)由旋转性质可知:
CD=CG且∠DCG=90°,
∴∠DGC=45°从而∠DGF=45°,
∵∠EFG=90°,
∴HF=FG=AD
又由旋转可知,AD∥EF,
∴∠DAM=∠HFM,
又∵∠DMA=∠HMF,
∴△ADM≌△FHM
∴AM=FM
(2)作FN⊥DG垂足为N
∵△ADM≌△MFH
∴DM=MH,AM=MF=AF
∵FH=FG,FN⊥HG
∴HN=NG
∵DG=DM+HM+HN+NG=2(MH+HN)
∴MN=DG
∵cos∠FMG=
∴cos∠AMD=
∴=cosα
【点睛】
本题考查旋转的性质,矩形的性质,全等三角形的判定,三角函数,关键是构造直角三角形.
18、(1)CD=BE,理由见解析;(1)证明见解析.
【解析】
(1)由两个三角形为等腰三角形可得AB=AC,AE=AD,由∠BAC=∠EAD可得∠EAB=∠CAD,根据“SAS”可证得△EAB≌△CAD,即可得出结论;
(1)根据(1)中结论和等腰直角三角形的性质得出∠EBF=90°,在Rt△EBF中由勾股定理得出BF1+BE1=EF1,然后证得EF=FD,BE=CD,等量代换即可得出结论.
【详解】
解:(1)CD=BE,理由如下:
∵△ABC和△ADE为等腰三角形,
∴AB=AC,AD=AE,
∵∠EAD=∠BAC,
∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,
即∠EAB=∠CAD,
在△EAB与△CAD中,
∴△EAB≌△CAD,
∴BE=CD;
(1)∵∠BAC=90°,
∴△ABC和△ADE都是等腰直角三角形,
∴∠ABF=∠C=45°,
∵△EAB≌△CAD,
∴∠EBA=∠C,
∴∠EBA=45°,
∴∠EBF=90°,
在Rt△BFE中,BF1+BE1=EF1,
∵AF平分DE,AE=AD,
∴AF垂直平分DE,
∴EF=FD,
由(1)可知,BE=CD,
∴BF1+CD1=FD1.
【点睛】
本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,结合题意寻找出三角形全等的条件是解决此题的关键.
19、(1)证明见解析;(2)证明见解析;(3)1;
【解析】
(1)根据平行线的判定求出即可;(2)连接OA,求出∠OAP=∠BAP+∠OAB=∠BOC+∠OBC=90°,根据切线的判定得出即可;(3)设BC=x,CM=2x,根据相似三角形的性质和判定求出NC=x,求出MN=2x+x=2.1x,OM=MN=1.21x,OC=0.71x,根据三角形的中位线性质得出0.71x=AD=3,求出x即可.
【详解】
(1)∵BD是直径,
∴∠DAB=90°,
∵PO⊥AB,
∴∠DAB=∠MCB=90°,
∴PM∥AD;
(2)连接OA,
∵OB=OM,
∴∠M=∠OBM,
∴∠BON=2∠M,
∵∠BAP=2∠M,
∴∠BON=∠BAP,
∵PO⊥AB,
∴∠ACO=90°,
∴∠AON+∠OAC=90°,
∵OA=OB,
∴∠BON=∠AON,
∴∠BAP=∠AON,
∴∠BAP+∠OAC=90°,
∴∠OAP=90°,
∵OA是半径,
∴PA是⊙O的切线;
(3)连接BN,
则∠MBN=90°.
∵tan∠M=,
∴=,
设BC=x,CM=2x,
∵MN是⊙O直径,NM⊥AB,
∴∠MBN=∠BCN=∠BCM=90°,
∴∠NBC=∠M=90°﹣∠BNC,
∴△MBC∽△BNC,
∴,
∴BC2=NC×MC,
∴NC=x,
∴MN=2x+x=2.1x,
∴OM=MN=1.21x,
∴OC=2x﹣1.21x=0.71x,
∵O是BD的中点,C是AB的中点,AD=6,
∴OC=0.71x=AD=3,
解得:x=4,
∴MO=1.21x=1.21×4=1,
∴⊙O的半径为1.
【点睛】
本题考查了圆周角定理,切线的性质和判定,相似三角形的性质和判定等知识点,能灵活运用知识点进行推理是解此题的关键,此题有一定的难度.
20、(1)一天可获利润2000元;(2)①每件商品应降价2元或8元;②当2≤x≤8时,商店所获利润不少于2160元.
【解析】
:(1)原来一天可获利:20×100=2000元;
(2)①y=(20-x)(100+10x)=-10(x2-10x-200),
由-10(x2-10x-200)=2160,
解得:x1=2,x2=8,
∴每件商品应降价2或8元;
②观察图像可得
21、(1)200人;(2)补图见解析;(3)分组后学生学习兴趣为“中”的所占的百分比为30%;对应扇形的圆心角为108°.
【解析】
试题分析:(1)用“极高”的人数所占的百分比,即可解答;
(2)求出“高”的人数,即可补全统计图;
(3)用“中”的人数调查的学生人数,即可得到所占的百分比,所占的百分比即可求出对应的扇形圆心角的度数.
试题解析:(人).
学生学习兴趣为“高”的人数为:(人).
补全统计图如下:
分组后学生学习兴趣为“中”的所占的百分比为:
学生学习兴趣为“中”对应扇形的圆心角为:
22、(1)y=﹣2x2+x+3;(2)∠ACB=45°;(3)D点坐标为(1,2)或(4,﹣25).
【解析】
(1)设交点式y=a(x+1)(x﹣),展开得到﹣a=3,然后求出a即可得到抛物线解析式;
(2)作AE⊥BC于E,如图1,先确定C(0,3),再分别计算出AC=,BC=,接着利用面积法计算出AE=,然后根据三角函数的定义求出∠ACE即可;
(3)作BH⊥CD于H,如图2,设H(m,n),证明Rt△BCH∽Rt△ACO,利用相似计算出BH=,CH=,再根据两点间的距离公式得到(m﹣)2+n2=()2,m2+(n﹣3)2=()2,接着通过解方程组得到H(,﹣)或(),然后求出直线CD的解析式,与二次函数联立成方程组,解方程组即可.
【详解】
(1)设抛物线解析式为y=a(x+1)(x﹣),即y=ax2﹣ax﹣a,∴﹣a=3,解得:a=﹣2,∴抛物线解析式为y=﹣2x2+x+3;
(2)作AE⊥BC于E,如图1,当x=0时,y=﹣2x2+x+3=3,则C(0,3),而A(﹣1,0),B(,0),∴AC==,BC==
AE•BC=OC•AB,∴AE==.
在Rt△ACE中,sin∠ACE===,∴∠ACE=45°,即∠ACB=45°;
(3)作BH⊥CD于H,如图2,设H(m,n).
∵tan∠DCB=tan∠ACO,∴∠HCB=∠ACO,∴Rt△BCH∽Rt△ACO,∴==,即==,∴BH=,CH=,∴(m﹣)2+n2=()2=,①
m2+(n﹣3)2=()2=,②
②﹣①得m=2n+,③,把③代入①得:(2n+﹣)2+n2=,整理得:80n2﹣48n﹣9=0,解得:n1=﹣,n2=.
当n=﹣时,m=2n+=,此时H(,﹣),易得直线CD的解析式为y=﹣7x+3,解方程组得:或,此时D点坐标为(4,﹣25);
当n=时,m=2n+=,此时H(),易得直线CD的解析式为y=﹣x+3,解方程组得:或,此时D点坐标为(1,2).
综上所述:D点坐标为(1,2)或(4,﹣25).
【点睛】
本题是二次函数综合题.熟练掌握二次函数图象上点的坐标特征、二次函数的性质和相似三角形的判定的性质;会利用待定系数法求函数解析式,把求两函数交点问题转化为解方程组的问题;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.
23、(1)等腰(2)(3)存在,
【解析】解:(1)等腰
(2)∵抛物线的“抛物线三角形”是等腰直角三角形,
∴该抛物线的顶点满足.
∴.
(3)存在.
如图,作△与△关于原点中心对称,
则四边形为平行四边形.
当时,平行四边形为矩形.
又∵,
∴△为等边三角形.
作,垂足为.
∴.
∴.
∴.
∴,.
∴,.
设过点三点的抛物线,则
解之,得
∴所求抛物线的表达式为.
24、 (1)m=20,n=8;55;(2) 答案见解析.
【解析】
(1)由A占25%,即可求得m的值,继而求得n的值,然后求得空气质量等级为“良”的天数占的百分比;
(2)首先由(1)补全统计图,然后利用样本估计总体的知识求解即可求得答案.
【详解】
(1)∵m=80×25%=20,n=80-20-44-4-2-2=8,
∴空气质量等级为“良”的天数占:×100%=55%.
故答案为20,8,55;
(2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365×(25%+55%)=292(天),
答:估计该市城区全年空气质量等级为“优”和“良”的天数共292天;
补全统计图:
【点睛】
此题考查了条形图与扇形图的知识.读懂统计图,从统计图中得到必要的信息是解决问题的关键.
相关试卷
这是一份甘肃省会宁县市级名校2021-2022学年中考四模数学试题含解析,共24页。试卷主要包含了下列判断正确的是,如图,已知,,则的度数为等内容,欢迎下载使用。
这是一份甘肃省省定西市2021-2022学年中考数学对点突破模拟试卷含解析,共16页。试卷主要包含了计算﹣8+3的结果是等内容,欢迎下载使用。
这是一份2022年甘肃省定西市名校中考三模数学试题含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,近似数精确到,平面直角坐标系中,若点A,下列函数是二次函数的是等内容,欢迎下载使用。