


福建省厦门市五校2021-2022学年中考一模数学试题含解析
展开
这是一份福建省厦门市五校2021-2022学年中考一模数学试题含解析,共26页。试卷主要包含了答题时请按要求用笔,不等式组的解集在数轴上表示为,估算的值是在等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.若关于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一个根为1,则m的值为
A.1 B.3 C.0 D.1或3
2.如图,⊙O的直径AB垂直于弦CD,垂足为E.若,AC=3,则CD的长为
A.6 B. C. D.3
3.已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是( )
A.k≤2且k≠1 B.k1;
解不等式②得,x>2;
∴不等式组的解集为:x≥2,
在数轴上表示为:
故选A.
【点睛】
本题考查了一元一次不等式组的解法,正确求得不等式组中每个不等式的解集是解决问题的关键.
9、C
【解析】
根据圆的弦的性质,连接DC,计算CD的长,再根据直角三角形的三角函数计算即可.
【详解】
∵D(0,3),C(4,0),
∴OD=3,OC=4,
∵∠COD=90°,
∴CD= =5,
连接CD,如图所示:
∵∠OBD=∠OCD,
∴cos∠OBD=cos∠OCD= .
故选:C.
【点睛】
本题主要三角函数的计算,结合考查圆性质的计算,关键在于利用等量替代原则.
10、C
【解析】
求出<<,推出4<<5,即可得出答案.
【详解】
∵<<,
∴4<<5,
∴的值是在4和5之间.
故选:C.
【点睛】
本题考查了估算无理数的大小和二次根式的性质,解此题的关键是得出<<,题目比较好,难度不大.
11、B
【解析】
画出函数图象,利用图象法解决问题即可;
【详解】
由题意,函数的图象为:
∵抛物线的对称轴x=,设抛物线与x轴交于点A、B,
∴AB<1,
∵x取m时,其相应的函数值小于0,
∴观察图象可知,x=m-1在点A的左侧,x=m-1时,y>0,
故选B.
【点睛】
本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用函数图象解决问题,体现了数形结合的思想.
12、C
【解析】
利用折线统计图结合相应数据,分别分析得出符合题意的答案.
【详解】
A选项:年最高温度呈上升趋势,正确;
B选项:2014年出现了这6年的最高温度,正确;
C选项:年的温差成下降趋势,错误;
D选项:2016年的温差最大,正确;
故选C.
【点睛】
考查了折线统计图,利用折线统计图获取正确信息是解题关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、210.
【解析】
利用邻补角的定义求出∠ABC+∠BCD,再利用四边形内角和定理求得∠A+∠D.
【详解】
∵∠1+∠2=210°,
∴∠ABC+∠BCD=180°×2﹣210°=150°,
∴∠A+∠D=360°﹣150°=210°.
故答案为:210.
【点睛】
本题考查了四边形的内角和定理以及邻补角的定义,利用邻补角的定义求出∠ABC+∠BCD是关键.
14、①②③④
【解析】
①如图1,作AU⊥NQ于U,交BD于H,连接AN,AC,
∵∠AMN=∠ABC=90°,
∴A,B,N,M四点共圆,
∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,
∴∠ANM=∠NAM=45°,
∴AM=MN;
②由同角的余角相等知,∠HAM=∠PMN,
∴Rt△AHM≌Rt△MPN,
∴MP=AH=AC=BD;
③∵∠BAN+∠QAD=∠NAQ=45°,
∴在∠NAM作AU=AB=AD,且使∠BAN=∠NAU,∠DAQ=∠QAU,
∴△ABN≌△UAN,△DAQ≌△UAQ,有∠UAN=∠UAQ,BN=NU,DQ=UQ,
∴点U在NQ上,有BN+DQ=QU+UN=NQ;
④如图2,作MS⊥AB,垂足为S,作MW⊥BC,垂足为W,点M是对角线BD上的点,
∴四边形SMWB是正方形,有MS=MW=BS=BW,
∴△AMS≌△NMW
∴AS=NW,
∴AB+BN=SB+BW=2BW,
∵BW:BM=1: ,
∴.
故答案为:①②③④
点睛:本题考查了正方形的性质,四点共圆的判定,圆周角定理,等腰直角三角形的性质,全等三角形的判定和性质;熟练掌握正方形的性质,正确作出辅助线并运用有关知识理清图形中西安段间的关系,证明三角形全等是解决问题的关键.
15、
【解析】
分析:根据二次根式的性质先化简,再合并同类二次根式即可.
详解:原式=3-5=﹣2.
点睛:此题主要考查了二次根式的加减,灵活利用二次根式的化简是解题关键,比较简单.
16、1
【解析】
过点D作于点H,根等腰三角形的性质求得BD的长度,继而得到,结合三角形中位线定理求得EF的长度即可.
【详解】
解:如图,过点D作于点H,
过点D作于点H,,
.
又平行线间的距离是8,点D是AB的中点,
,
在直角中,由勾股定理知,.
点D是AB的中点,
.
又点E、F分别是AC、BC的中点,
是的中位线,
.
故答案是:1.
【点睛】
考查了三角形中位线定理和平行线的性质,解题的关键是根据平行线的性质求得DH的长度.
17、或
【解析】
①点A落在矩形对角线BD上,如图1,
∵AB=4,BC=3,
∴BD=5,
根据折叠的性质,AD=A′D=3,AP=A′P,∠A=∠PA′D=90°,
∴BA′=2,设AP=x,则BP=4﹣x,∵BP2=BA′2+PA′2,
∴(4﹣x)2=x2+22,
解得:x=,∴AP=;
②点A落在矩形对角线AC上,如图2,根据折叠的性质可知DP⊥AC,
∴△DAP∽△ABC,
∴,
∴AP===.
故答案为或.
18、
【解析】
让黄球的个数除以球的总个数即为所求的概率.
【详解】
解:因为一共10个球,其中3个黄球,所以从袋中任意摸出2个球是黄球的概率是.
故答案为:.
【点睛】
本题考查了概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)3;(2);(3)
【解析】
设塔的顶层共有盏灯,根据题意列出方程,进行解答即可.
参照题目中的解题方法进行计算即可.
由题意求得数列的每一项,及前n项和Sn=2n+1-2-n,及项数,由题意可知:2n+1为2的整数幂.只需将-2-n消去即可,分别分别即可求得N的值
【详解】
设塔的顶层共有盏灯,由题意得
.
解得,
顶层共有盏灯.
设,
,
即:
.
即
由题意可知:20第一项,20,21第二项,20,21,22第三项,…20,21,22…,2n−1第n项,
根据等比数列前n项和公式,求得每项和分别为:
每项含有的项数为:1,2,3,…,n,
总共的项数为
所有项数的和为
由题意可知:为2的整数幂,只需将−2−n消去即可,
则①1+2+(−2−n)=0,解得:n=1,总共有,不满足N>10,
②1+2+4+(−2−n)=0,解得:n=5,总共有 满足,
③1+2+4+8+(−2−n)=0,解得:n=13,总共有 满足,
④1+2+4+8+16+(−2−n)=0,解得:n=29,总共有 不满足,
∴
【点睛】
考查归纳推理,读懂题目中等比数列的求和方法是解题的关键.
20、 (1)300;(2)见解析;(3)108°;(4)约有840名.
【解析】
(1)根据A种类人数及其占总人数百分比可得答案;
(2)用总人数乘以B的百分比得出其人数,即可补全条形图;
(3)用360°乘以C类人数占总人数的比例可得;
(4)总人数乘以C、D两类人数占样本的比例可得答案.
【详解】
解:(1)本次被调查的学生的人数为69÷23%=300(人),
故答案为:300;
(2)喜欢B类校本课程的人数为300×20%=60(人),
补全条形图如下:
(3)扇形统计图中,C类所在扇形的圆心角的度数为360°×=108°,
故答案为:108°;
(4)∵2000×=840,
∴估计该校喜爱C,D两类校本课程的学生共有840名.
【点睛】
本题考查条形统计图、扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解题关键.条形统计图能清楚地表示出每个项目的数据.
21、5.5米
【解析】
过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中表示出AD,在Rt△BCD中表示出BD,再由AB=4米,即可得出关于x的方程,解出即可.
【详解】
解:过点C作CD⊥AB于点D,
设CD=x,
在Rt△ACD中,∠CAD=30°,则AD=CD=x.
在Rt△BCD中,∠CBD=45°,则BD=CD=x.
由题意得,x﹣x=4,
解得:.
答:生命所在点C的深度为5.5米.
22、(1)2400,60;(2)见解析;(3)500
【解析】
整体分析:
(1)由C品牌1200个占总数的50%可得鸡蛋的数量,用A品牌占总数的百分比乘以360°即可;(2)计算出B品牌的数量;(3)用B品牌与总数的比乘以1500.
解:(1)共销售绿色鸡蛋:1200÷50%=2400个,
A品牌所占的圆心角:×360°=60°;
故答案为2400,60;
(2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,
补全统计图如图:
(3)分店销售的B种品牌的绿色鸡蛋为:×1500=500个.
23、2x-40.
【解析】
原式利用多项式乘以多项式法则计算,去括号合并即可.
【详解】
解:原式=x2-6x+7x-42-x2-x+2x+2=2x-40.
【点睛】
此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
24、(1)证明见解析;(1)①16;②14;
【解析】
(1)根据平行四边形的性质得到AD∥BC,AB=DC,AB∥CD于是得到BE=CF,根据全等三角形的性质得到∠A=∠D,根据平行线的性质得到∠A+∠D=180°,由矩形的判定定理即可得到结论;
(1)①根据相似三角形的性质得到,求得△GBC的面积为18,于是得到四边形BCFE的面积为16;
②根据四边形BCFE的面积为16,列方程得到BC•AB=14,即可得到结论.
【详解】
(1)证明:∵GB=GC,
∴∠GBC=∠GCB,
在平行四边形ABCD中,
∵AD∥BC,AB=DC,AB∥CD,
∴GB-GE=GC-GF,
∴BE=CF,
在△ABE与△DCF中,
,
∴△ABE≌△DCF,
∴∠A=∠D,
∵AB∥CD,
∴∠A+∠D=180°,
∴∠A=∠D=90°,
∴四边形ABCD是矩形;
(1)①∵EF∥BC,
∴△GFE∽△GBC,
∵EF=AD,
∴EF=BC,
∴,
∵△GEF的面积为1,
∴△GBC的面积为18,
∴四边形BCFE的面积为16,;
②∵四边形BCFE的面积为16,
∴(EF+BC)•AB=×BC•AB=16,
∴BC•AB=14,
∴四边形ABCD的面积为14,
故答案为:14.
【点睛】
本题考查了相似三角形的判定和性质,矩形的判定和性质,图形面积的计算,全等三角形的判定和性质,证得△GFE∽△GBC是解题的关键.
25、(1)A、B 两处粮仓原有存粮分别是 270,1 吨;(2)此次调拨能满足 C 粮仓需求;(3)小王途中须加油才能安全回到 B 地.
【解析】
(1)由题意可知要求A,B两处粮仓原有存粮各多少吨需找等量关系,即A处存粮+B处存粮=450吨,A处存粮的五分之二=B处存粮的五分之三,据等量关系列方程组求解即可;
(2)分别求出A处和B处支援C处的粮食,将其加起来与200吨比较即可;
(3)由题意可知由已知可得△ABC中∠A=26°∠ACB=90°且AB=1Km,sin∠BAC=,要求BC的长,可以运用三角函数解直角三角形.
【详解】
(1)设A,B两处粮仓原有存粮x,y吨
根据题意得:
解得:x=270,y=1.
答:A,B两处粮仓原有存粮分别是270,1吨.
(2)A粮仓支援C粮仓的粮食是×270=162(吨),
B粮仓支援C粮仓的粮食是×1=72(吨),
A,B两粮仓合计共支援C粮仓粮食为162+72=234(吨).
∵234>200,
∴此次调拨能满足C粮仓需求.
(3)如图,
根据题意知:∠A=26°,AB=1千米,∠ACB=90°.
在Rt△ABC中,sin∠BAC=,
∴BC=AB•sin∠BAC=1×0.44=79.2.
∵此车最多可行驶4×35=140(千米)<2×79.2,
∴小王途中须加油才能安全回到B地.
【点睛】
求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
26、(1)抛物线的解析式为.(2)平移后的抛物线解析式为:.(3)点的坐标为或.
【解析】
分析:(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;
(2)根据旋转的知识可得:A(1,0),B(0,2),∴OA=1,OB=2,
可得旋转后C点的坐标为(3,1),当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2)∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2-3x+1;
(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想.
详解: (1)已知抛物线经过,,
∴,解得,
∴所求抛物线的解析式为.
(2)∵,,∴,,
可得旋转后点的坐标为.
当时,由得,
可知抛物线过点.
∴将原抛物线沿轴向下平移1个单位长度后过点.
∴平移后的抛物线解析式为:.
(3)∵点在上,可设点坐标为,
将配方得,∴其对称轴为.由题得B1(0,1).
①当时,如图①,
∵,
∴,
∴,
此时,
∴点的坐标为.
②当时,如图②,
同理可得,
∴,
此时,
∴点的坐标为.
综上,点的坐标为或.
点睛:此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.
27、(1)该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)192元.
【解析】
(1)直接利用每件利润×销量=总利润进而得出等式求出答案;
(2)直接利用每件利润×销量=总利润进而得出函数关系式,利用二次函数增减性求出答案.
【详解】
(1)根据题意得:(x﹣20)(﹣2x+1)=150,
解得:x1=25,x2=35,
答:该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;
(2)由题意得:W=(x﹣20)(﹣2x+1)=﹣2(x﹣30)2+200,
∵a=﹣2,
∴抛物线开口向下,当x<30时,y随x的增大而增大,
又由于这种农产品的销售价不高于每千克28元
∴当x=28时,W最大=﹣2×(28﹣30)2+200=192(元).
∴销售价定为每千克28元时,每天的销售利润最大,最大利润是192元.
【点睛】
此题主要考查了一元二次方程的应用以及二次函数的应用,正确应用二次函数增减性是解题关键.
相关试卷
这是一份福建省厦门市思明区莲花中学2021-2022学年中考数学五模试卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,若a+|a|=0,则等于,下列计算正确的是,下列哪一个是假命题等内容,欢迎下载使用。
这是一份福建省厦门市五缘第二实验校2022年中考五模数学试题含解析,共22页。
这是一份2022年福建省厦门市同安区五校中考数学四模试卷含解析,共18页。试卷主要包含了已知x=2﹣,则代数式等内容,欢迎下载使用。
