广东省统考重点名校2021-2022学年中考试题猜想数学试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.下列命题中假命题是( )
A.正六边形的外角和等于 B.位似图形必定相似
C.样本方差越大,数据波动越小 D.方程无实数根
2.去年二月份,某房地产商将房价提高40%,在中央“房子是用来住的,不是用来炒的”指示下达后,立即降价30%.设降价后房价为x,则去年二月份之前房价为( )
A.(1+40%)×30%x B.(1+40%)(1﹣30%)x
C. D.
3.潍坊市2018年政府工作报告中显示,潍坊社会经济平稳运行,地区生产总值增长8%左右,社会消费品零售总额增长12%左右,一般公共预算收入539.1亿元,7家企业入选国家“两化”融合贯标试点,潍柴集团收入突破2000亿元,荣获中国商标金奖.其中,数字2000亿元用科学记数法表示为( )元.(精确到百亿位)
A.2×1011 B.2×1012 C.2.0×1011 D.2.0×1010
4.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
5.已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为,当电压为定值时,I关于R的函数图象是( )
A. B. C. D.
6.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是( )
A.135° B.120° C.60° D.45°
7.如图,将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,连接AA',若∠1=20°,则∠B的度数是( )
A.70° B.65° C.60° D.55°
8.已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围内有两个相等的实数根,则c的取值范围是( )
A.c=4 B.﹣5<c≤4 C.﹣5<c<3或c=4 D.﹣5<c≤3或c=4
9.小华和小红到同一家鲜花店购买百合花与玫瑰花,他们购买的数量如下表所示,小华一共花的钱比小红少8元,下列说法正确的是( )
百合花
玫瑰花
小华
6支
5支
小红
8支
3支
A.2支百合花比2支玫瑰花多8元
B.2支百合花比2支玫瑰花少8元
C.14支百合花比8支玫瑰花多8元
D.14支百合花比8支玫瑰花少8元
10.若一个三角形的两边长分别为5和7,则该三角形的周长可能是( )
A.12 B.14 C.15 D.25
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如果关于x的一元二次方程有两个不相等的实数根,那么的取值范围是__________.
12.如图,已知矩形ABCD中,点E是BC边上的点,BE=2,EC=1,AE=BC,DF⊥AE,垂足为F.则下列结论:①△ADF≌△EAB;②AF=BE;③DF平分∠ADC;④sin∠CDF=.其中正确的结论是_____.(把正确结论的序号都填上)
13.如图,中,,则 __________.
14.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为_____.
15.已知正比例函数的图像经过点M( )、、,如果,那么________.(填“>”、“=”、“<”)
16.已知点A(2,4)与点B(b﹣1,2a)关于原点对称,则ab=_____.
三、解答题(共8题,共72分)
17.(8分)如图,在Rt△ABC中,,点在边上,⊥,点为垂足,,∠DAB=450,tanB=.
(1)求的长;
(2)求的余弦值.
18.(8分)如图,AB是半圆O的直径,D为弦BC的中点,延长OD交弧BC于点E,点F为OD的延长线上一点且满足∠OBC=∠OFC,求证:CF为⊙O的切线;若四边形ACFD是平行四边形,求sin∠BAD的值.
19.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,边结DE,OE、OD,求证:DE是⊙O的切线.
20.(8分)如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一老人坐在MN这层台阶上晒太阳.(取1.73)
(1)求楼房的高度约为多少米?
(2)过了一会儿,当α=45°时,问老人能否还晒到太阳?请说明理由.
21.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.
(1)求证:DE是⊙O的切线;
(2)若AD=16,DE=10,求BC的长.
22.(10分)如图,用细线悬挂一个小球,小球在竖直平面内的A、C两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,∠AOB=66°,求细线OB的长度.(参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)
23.(12分)如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线经过A、C两点,与AB边交于点D.
(1)求抛物线的函数表达式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式,并求出m为何值时,S取得最大值;
②当S最大时,在抛物线的对称轴l上若存在点F,使△FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.
24.为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地大约要走多少千米?开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
试题解析:A、正六边形的外角和等于360°,是真命题;
B、位似图形必定相似,是真命题;
C、样本方差越大,数据波动越小,是假命题;
D、方程x2+x+1=0无实数根,是真命题;
故选:C.
考点:命题与定理.
2、D
【解析】
根据题意可以用相应的代数式表示出去年二月份之前房价,本题得以解决.
【详解】
由题意可得,
去年二月份之前房价为:x÷(1﹣30%)÷(1+40%)=,
故选:D.
【点睛】
本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式.
3、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
2000亿元=2.0×1.
故选:C.
【点睛】
考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4、D
【解析】
试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且= .∴==.∴A′E=AD=2,OE=OD=1.∴A′(-1,2).同理可得A′′(1,―2).
方法二:∵点A(―3,6)且相似比为,∴点A的对应点A′的坐标是(―3×,6×),∴A′(-1,2).
∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).
故答案选D.
考点:位似变换.
5、C
【解析】
根据反比例函数的图像性质进行判断.
【详解】
解:∵,电压为定值,
∴I关于R的函数是反比例函数,且图象在第一象限,
故选C.
【点睛】
本题考查反比例函数的图像,掌握图像性质是解题关键.
6、B
【解析】
易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.
【详解】
∵四边形ABCD是正方形,
∴AB=AD,∠BAF=∠DAF,
∴△ABF≌△ADF,
∴∠AFD=∠AFB,
∵CB=CE,
∴∠CBE=∠CEB,
∵∠BCE=∠BCD+∠DCE=90°+60°=150°,
∴∠CBE=15°,
∵∠ACB=45°,
∴∠AFB=∠ACB+∠CBE=60°.
∴∠AFE=120°.
故选B.
【点睛】
此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化.
7、B
【解析】
根据图形旋转的性质得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,从而得∠AA′C=45°,结合∠1=20°,即可求解.
【详解】
∵将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,
∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,
∴∠AA′C=45°,
∵∠1=20°,
∴∠B′A′C=45°-20°=25°,
∴∠A′B′C=90°-25°=65°,
∴∠B=65°.
故选B.
【点睛】
本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键.
8、D
【解析】
解:由对称轴x=2可知:b=﹣4,
∴抛物线y=x2﹣4x+c,
令x=﹣1时,y=c+5,
x=3时,y=c﹣3,
关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围有实数根,
当△=0时,
即c=4,
此时x=2,满足题意.
当△>0时,
(c+5)(c﹣3)≤0,
∴﹣5≤c≤3,
当c=﹣5时,
此时方程为:﹣x2+4x+5=0,
解得:x=﹣1或x=5不满足题意,
当c=3时,
此时方程为:﹣x2+4x﹣3=0,
解得:x=1或x=3此时满足题意,
故﹣5<c≤3或c=4,
故选D.
点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数与一元二次方程之间的关系是解题的关键.
9、A
【解析】
设每支百合花x元,每支玫瑰花y元,根据总价=单价×购买数量结合小华一共花的钱比小红少8元,即可得出关于x、y的二元一次方程,整理后即可得出结论.
【详解】
设每支百合花x元,每支玫瑰花y元,根据题意得:
8x+3y﹣(6x+5y)=8,整理得:2x﹣2y=8,
∴2支百合花比2支玫瑰花多8元.
故选:A.
【点睛】
考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.
10、C
【解析】
先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.
【详解】
∴三角形的两边长分别为5和7,
∴2<第三条边<12,
∴5+7+2<三角形的周长<5+7+12,
即14<三角形的周长<24,
故选C.
【点睛】
本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、k>-且k≠1
【解析】
由题意知,k≠1,方程有两个不相等的实数根,
所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.
又∵方程是一元二次方程,∴k≠1,
∴k>-1/4 且k≠1.
12、①②
【解析】
只要证明△EAB≌△ADF,∠CDF=∠AEB,利用勾股定理求出AB即可解决问题.
【详解】
∵四边形ABCD是矩形,
∴AD=BC,AD∥BC,∠B=90°,
∵BE=2,EC=1,
∴AE=AD=BC=3,AB==,
∵AD∥BC,
∴∠DAF=∠AEB,
∵DF⊥AE,
∴∠AFD=∠B=90°,
∴△EAB≌△ADF,
∴AF=BE=2,DF=AB=,故①②正确,
不妨设DF平分∠ADC,则△ADF是等腰直角三角形,这个显然不可能,故③错误,
∵∠DAF+∠ADF=90°,∠CDF+∠ADF=90°,
∴∠DAF=∠CDF,
∴∠CDF=∠AEB,
∴sin∠CDF=sin∠AEB=,故④错误,
故答案为①②.
【点睛】
本题考查矩形的性质、全等三角形的判定和性质、解直角三角形、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
13、17
【解析】
∵Rt△ABC中,∠C=90°,∴tanA= ,
∵,∴AC=8,
∴AB= =17,
故答案为17.
14、﹣2
【解析】
要求函数的解析式只要求出B点的坐标就可以,过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.根据条件得到△ACO∽△ODB,得到:=1,然后用待定系数法即可.
【详解】
过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.
设点A的坐标是(m,n),则AC=n,OC=m.
∵∠AOB=90°,
∴∠AOC+∠BOD=90°.
∵∠DBO+∠BOD=90°,
∴∠DBO=∠AOC.
∵∠BDO=∠ACO=90°,
∴△BDO∽△OCA.
∴,
∵OB=1OA,
∴BD=1m,OD=1n.
因为点A在反比例函数y=的图象上,
∴mn=1.
∵点B在反比例函数y=的图象上,
∴B点的坐标是(-1n,1m).
∴k=-1n•1m=-4mn=-2.
故答案为-2.
【点睛】
本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,利用相似三角形的性质求得点B的坐标(用含n的式子表示)是解题的关键.
15、>
【解析】
分析:根据正比例函数的图象经过点M(﹣1,1)可以求得该函数的解析式,然后根据正比例函数的性质即可解答本题.
详解:设该正比例函数的解析式为y=kx,则1=﹣1k,得:k=﹣0.5,∴y=﹣0.5x.∵正比例函数的图象经过点A(x1,y1)、B(x1,y1),x1<x1,∴y1>y1.
故答案为>.
点睛:本题考查了正比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用正比例函数的性质解答.
16、1.
【解析】
由题意,得
b−1=−1,1a=−4,
解得b=−1,a=−1,
∴ab=(−1) ×(−1)=1,
故答案为1.
三、解答题(共8题,共72分)
17、 (1)3;(2)
【解析】
分析:(1)由题意得到三角形ADE为等腰直角三角形,在直角三角形DEB中,利用锐角三角函数定义求出DE与BE之比,设出DE与BE,由AB=7求出各自的值,确定出DE即可;
(2)在直角三角形中,利用勾股定理求出AD与BD的长,根据tanB的值求出cosB的值,确定出BC的长,由BC﹣BD求出CD的长,利用锐角三角函数定义求出所求即可.
详解:(1)∵DE⊥AB,∴∠DEA=90°.又∵∠DAB=41°,∴DE=AE.在Rt△DEB中,∠DEB=90°,tanB==,设DE=3x,那么AE=3x,BE=4x.∵AB=7,∴3x+4x=7,解得:x=1,∴DE=3;
(2)在Rt△ADE中,由勾股定理,得:AD=3,同理得:BD=1.在Rt△ABC中,由tanB=,可得:cosB=,∴BC=,∴CD=,∴cos∠CDA==,即∠CDA的余弦值为.
点睛:本题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,等腰直角三角形的判定与性质,熟练掌握各自的性质是解答本题的关键.
18、 (1)见解析;(2).
【解析】
(1)连接OC,根据等腰三角形的性质得到∠OCB=∠B,∠OCB=∠F,根据垂径定理得到OF⊥BC,根据余角的性质得到∠OCF=90°,于是得到结论;
(2)过D作DH⊥AB于H,根据三角形的中位线的想知道的OD=AC,根据平行四边形的性质得到DF=AC,设OD=x,得到AC=DF=2x,根据射影定理得到CD=x,求得BD=x,根据勾股定理得到AD=x,于是得到结论.
【详解】
解:(1)连接OC,
∵OC=OB,
∴∠OCB=∠B,
∵∠B=∠F,
∴∠OCB=∠F,
∵D为BC的中点,
∴OF⊥BC,
∴∠F+∠FCD=90°,
∴∠OCB+∠FCD=90°,
∴∠OCF=90°,
∴CF为⊙O的切线;
(2)过D作DH⊥AB于H,
∵AO=OB,CD=DB,
∴OD=AC,
∵四边形ACFD是平行四边形,
∴DF=AC,
设OD=x,
∴AC=DF=2x,
∵∠OCF=90°,CD⊥OF,
∴CD2=OD•DF=2x2,
∴CD=x,
∴BD=x,
∴AD=x,
∵OD=x,BD=x,
∴OB=x,
∴DH=x,
∴sin∠BAD==.
【点睛】
本题考查了切线的判定和性质,平行四边形的性质,垂径定理,射影定理,勾股定理,三角函数的定义,正确的作出辅助线是解题的关键.
19、详见解析.
【解析】
试题分析:由三角形的中位线得出OE∥AB,进一步利用平行线的性质和等腰三角形性质,找出△OCE和△ODE相等的线段和角,证得全等得出答案即可.
试题解析:证明:∵点E为AC的中点,OC=OB,∴OE∥AB,∴∠EOC=∠B,∠EOD=∠ODB.又∵∠ODB=∠B,∴∠EOC=∠EOD.
在△OCE和△ODE中,∵OC=OD,∠EOC=∠EOD, OE=OE,∴△OCE≌△ODE(SAS),∴∠EDO=∠ECO=90°,∴DE⊥OD,∴DE是⊙O的切线.
点睛:此题考查切线的判定.证明的关键是得到△OCE≌△ODE.
20、(1)楼房的高度约为17.3米;(2)当α=45°时,老人仍可以晒到太阳.理由见解析.
【解析】
试题分析:(1)在Rt△ABE中,根据的正切值即可求得楼高;(2)当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.可求得AF=AB=17.3米,又因CF=CH=17.3-17.2=0.1米,CM=0.2,所以大楼的影子落在台阶MC这个侧面上.即小猫仍可晒到太阳.
试题解析:解:(1)当当时,在Rt△ABE中,
∵,
∴BA=10tan60°=米.
即楼房的高度约为17.3米.
当时,小猫仍可晒到太阳.理由如下:
假设没有台阶,当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.
∵∠BFA=45°,
∴,此时的影长AF=BA=17.3米,
所以CF=AF-AC=17.3-17.2=0.1.
∴CH=CF=0.1米,
∴大楼的影子落在台阶MC这个侧面上.
∴小猫仍可晒到太阳.
考点:解直角三角形.
21、(1)证明见解析;(2)15.
【解析】
(1)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.
(2)首先证明AC=2DE=20,在Rt△ADC中,DC=12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题.
【详解】
(1)证明:连结OD,∵∠ACB=90°,
∴∠A+∠B=90°,
又∵OD=OB,
∴∠B=∠BDO,
∵∠ADE=∠A,
∴∠ADE+∠BDO=90°,
∴∠ODE=90°.
∴DE是⊙O的切线;
(2)连结CD,∵∠ADE=∠A,
∴AE=DE.
∵BC是⊙O的直径,∠ACB=90°.
∴EC是⊙O的切线.
∴DE=EC.
∴AE=EC,
又∵DE=10,
∴AC=2DE=20,
在Rt△ADC中,DC=
设BD=x,在Rt△BDC中,BC2=x2+122,
在Rt△ABC中,BC2=(x+16)2﹣202,
∴x2+122=(x+16)2﹣202,解得x=9,
∴BC=.
【点睛】
考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题.
22、15cm
【解析】
试题分析:设细线OB的长度为xcm,作AD⊥OB于D,证出四边形ANMD是矩形,得出AN=DM=14cm,求出OD=x-9,在Rt△AOD中,由三角函数得出方程,解方程即可.
试题解析:设细线OB的长度为xcm,作AD⊥OB于D,如图所示:
∴∠ADM=90°,
∵∠ANM=∠DMN=90°,
∴四边形ANMD是矩形,
∴AN=DM=14cm,
∴DB=14﹣5=9cm,
∴OD=x﹣9,
在Rt△AOD中,cos∠AOD=,
∴cos66°==0.40,
解得:x=15,
∴OB=15cm.
23、(1);(2)①,当m=5时,S取最大值;②满足条件的点F共有四个,坐标分别为,,,,
【解析】
(1)将A、C两点坐标代入抛物线y=-x2+bx+c,即可求得抛物线的解析式;
(2)①先用m表示出QE的长度,进而求出三角形的面积S关于m的函数;
②直接写出满足条件的F点的坐标即可,注意不要漏写.
【详解】
解:(1)将A、C两点坐标代入抛物线,得 ,
解得: ,
∴抛物线的解析式为y=﹣x2+x+8;
(2)①∵OA=8,OC=6,
∴AC= =10,
过点Q作QE⊥BC与E点,则sin∠ACB = = =,
∴ =,
∴QE=(10﹣m),
∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;
②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,
∴当m=5时,S取最大值;
在抛物线对称轴l上存在点F,使△FDQ为直角三角形,
∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,
D的坐标为(3,8),Q(3,4),
当∠FDQ=90°时,F1(,8),
当∠FQD=90°时,则F2(,4),
当∠DFQ=90°时,设F(,n),
则FD2+FQ2=DQ2,
即+(8﹣n)2++(n﹣4)2=16,
解得:n=6± ,
∴F3(,6+),F4(,6﹣),
满足条件的点F共有四个,坐标分别为
F1(,8),F2(,4),F3(,6+),F4(,6﹣).
【点睛】
本题考查二次函数的综合应用能力,其中涉及到的知识点有抛物线的解析式的求法抛物线的最值等知识点,是各地中考的热点和难点,解题时注意数形结合数学思想的运用,同学们要加强训练,属于中档题.
24、(1)开通隧道前,汽车从A地到B地大约要走136.4千米;(2)汽车从A地到B地比原来少走的路程为27.2千米
【解析】
(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;
(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.
【详解】
解:(1)过点C作AB的垂线CD,垂足为D,
∵AB⊥CD,sin30°=,BC=80千米,
∴CD=BC•sin30°=80×(千米),
AC=(千米),
AC+BC=80+40≈40×1.41+80=136.4(千米),
答:开通隧道前,汽车从A地到B地大约要走136.4千米;
(2)∵cos30°=,BC=80(千米),
∴BD=BC•cos30°=80×(千米),
∵tan45°=,CD=40(千米),
∴AD=(千米),
∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),
∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=136.4﹣109.2=27.2(千米).
答:汽车从A地到B地比原来少走的路程为27.2千米.
【点睛】
本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
吉林省辉南县重点达标名校2021-2022学年中考试题猜想数学试卷含解析: 这是一份吉林省辉南县重点达标名校2021-2022学年中考试题猜想数学试卷含解析,共27页。试卷主要包含了若M,下列计算正确的是等内容,欢迎下载使用。
广东省统考重点名校2021-2022学年中考考前最后一卷数学试卷含解析: 这是一份广东省统考重点名校2021-2022学年中考考前最后一卷数学试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,如果,那么的值为等内容,欢迎下载使用。
广东省宝塔实验重点名校2022年中考试题猜想数学试卷含解析: 这是一份广东省宝塔实验重点名校2022年中考试题猜想数学试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,将抛物线y=﹣,下列运算正确的是等内容,欢迎下载使用。