|试卷下载
终身会员
搜索
    上传资料 赚现金
    广东省广州荔湾区六校联考2021-2022学年毕业升学考试模拟卷数学卷含解析
    立即下载
    加入资料篮
    广东省广州荔湾区六校联考2021-2022学年毕业升学考试模拟卷数学卷含解析01
    广东省广州荔湾区六校联考2021-2022学年毕业升学考试模拟卷数学卷含解析02
    广东省广州荔湾区六校联考2021-2022学年毕业升学考试模拟卷数学卷含解析03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省广州荔湾区六校联考2021-2022学年毕业升学考试模拟卷数学卷含解析

    展开
    这是一份广东省广州荔湾区六校联考2021-2022学年毕业升学考试模拟卷数学卷含解析,共27页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算,结果等于a4的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.若分式的值为零,则x的值是( )
    A.1 B. C. D.2
    2.函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=AP.其中所有正确结论的序号是(  )

    A.①②③ B.②③④ C.①③④ D.①②④
    3.如图是一个由5个相同的正方体组成的立体图形,它的主视图是(  )

    A. B.
    C. D.
    4.下列计算,结果等于a4的是(  )
    A.a+3a B.a5﹣a C.(a2)2 D.a8÷a2
    5.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )

    A.14° B.15° C.16° D.17°
    6.如图是几何体的三视图,该几何体是( )

    A.圆锥 B.圆柱 C.三棱柱 D.三棱锥
    7.如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P在BC上从点B向点C移动,而点R不动时,下列结论正确的是( )

    A.线段EF的长逐渐增长 B.线段EF的长逐渐减小
    C.线段EF的长始终不变 D.线段EF的长与点P的位置有关
    8.若一元二次方程x2﹣2kx+k2=0的一根为x=﹣1,则k的值为(  )
    A.﹣1 B.0 C.1或﹣1 D.2或0
    9.明明和亮亮都在同一直道A、B两地间做匀速往返走锻炼明明的速度小于亮亮的速度忽略掉头等时间明明从A地出发,同时亮亮从B地出发图中的折线段表示从开始到第二次相遇止,两人之间的距离米与行走时间分的函数关系的图象,则  

    A.明明的速度是80米分 B.第二次相遇时距离B地800米
    C.出发25分时两人第一次相遇 D.出发35分时两人相距2000米
    10.二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是( )

    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图所示,在平面直角坐标系中,已知反比例函数y=(x>0)的图象和菱形OABC,且OB=4,tan∠BOC=,若将菱形向右平移,菱形的两个顶点B、C恰好同时落在反比例函数的图象上,则反比例函数的解析式是______________.

    12.比较大小:_____.(填“<“,“=“,“>“)
    13.若从 -3,-1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是_________.
    14.已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_______.
    15.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=_____.

    16.下列图形是用火柴棒摆成的“金鱼”,如果第1个图形需要8根火柴,则第2个图形需要14根火柴,第根图形需要____________根火柴.

    三、解答题(共8题,共72分)
    17.(8分)(问题发现)
    (1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC的位置关系为   ;
    (拓展探究)
    (2)如图(2)在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;
    (解决问题)
    (3)如图(3)在正方形ABCD中,AB=2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方的值.

    18.(8分)(1)问题发现:
    如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为   ;
    (2)深入探究:
    如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;
    (3)拓展延伸:
    如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=,试求EF的长.

    19.(8分)均衡化验收以来,乐陵每个学校都高楼林立,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走6 米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°,已如A点离地面的高度AB=4米,∠BCA=30°,且B、C、D 三点在同一直线上.

    (1)求树DE的高度;
    (2)求食堂MN的高度.
    20.(8分)计算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.
    21.(8分)()如图①已知四边形中,,BC=b,,求:
    ①对角线长度的最大值;
    ②四边形的最大面积;(用含,的代数式表示)
    ()如图②,四边形是某市规划用地的示意图,经测量得到如下数据:,,,,请你利用所学知识探索它的最大面积(结果保留根号)

    22.(10分)如图,儿童游乐场有一项射击游戏.从O处发射小球,将球投入正方形篮筐DABC.正方形篮筐三个顶点为A(2,2),B(3,2),D(2,3).小球按照抛物线y=﹣x2+bx+c 飞行.小球落地点P 坐标(n,0)
    (1)点C坐标为 ;
    (2)求出小球飞行中最高点N的坐标(用含有n的代数式表示);
    (3)验证:随着n的变化,抛物线的顶点在函数y=x2的图象上运动;
    (4)若小球发射之后能够直接入篮,球没有接触篮筐,请直接写出n的取值范围.

    23.(12分)如图1,抛物线y=ax2+(a+2)x+2(a≠0),与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.

    (1)求抛物线的解析式;
    (2)若PN:PM=1:4,求m的值;
    (3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点O逆时针旋转得到OP2,旋转角为α(0°<α<90°),连接AP2、BP2,求AP2+的最小值.
    24.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
    (1)求抛物线的表达式;
    (2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
    (3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    试题解析:∵分式的值为零,
    ∴|x|﹣1=0,x+1≠0,
    解得:x=1.
    故选A.
    2、C
    【解析】
    解:∵A、B是反比函数上的点,∴S△OBD=S△OAC=,故①正确;
    当P的横纵坐标相等时PA=PB,故②错误;
    ∵P是的图象上一动点,∴S矩形PDOC=4,∴S四边形PAOB=S矩形PDOC﹣S△ODB﹣﹣S△OAC=4﹣﹣=3,故③正确;
    连接OP,=4,∴AC=PC,PA=PC,∴=3,∴AC=AP;故④正确;
    综上所述,正确的结论有①③④.故选C.

    点睛:本题考查的是反比例函数综合题,熟知反比例函数中系数k的几何意义是解答此题的关键.
    3、A
    【解析】
    画出从正面看到的图形即可得到它的主视图.
    【详解】
    这个几何体的主视图为:

    故选:A.
    【点睛】
    本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.
    4、C
    【解析】
    根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.
    【详解】
    A.a+3a=4a,错误;
    B.a5和a不是同类项,不能合并,故此选项错误;
    C.(a2)2=a4,正确;
    D.a8÷a2=a6,错误.
    故选C.
    【点睛】
    本题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则.
    5、C
    【解析】
    依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.
    【详解】
    如图,

    ∵∠ABC=60°,∠2=44°,
    ∴∠EBC=16°,
    ∵BE∥CD,
    ∴∠1=∠EBC=16°,
    故选:C.
    【点睛】
    本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.
    6、C
    【解析】
    分析:根据一个空间几何体的主视图和左视图都是长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断是三棱柱,得到答案.
    详解:∵几何体的主视图和左视图都是长方形,
    故该几何体是一个柱体,
    又∵俯视图是一个三角形,
    故该几何体是一个三棱柱,
    故选C.
    点睛:本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.
    7、C
    【解析】
    试题分析:连接AR,根据勾股定理得出AR=的长不变,根据三角形的中位线定理得出EF=AR,即可得出线段EF的长始终不变,
    故选C.

    考点:1、矩形性质,2、勾股定理,3、三角形的中位线
    8、A
    【解析】
    把x=﹣1代入方程计算即可求出k的值.
    【详解】
    解:把x=﹣1代入方程得:1+2k+k2=0,
    解得:k=﹣1,
    故选:A.
    【点睛】
    此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
    9、B
    【解析】
    C、由二者第二次相遇的时间结合两次相遇分别走过的路程,即可得出第一次相遇的时间,进而得出C选项错误;
    A、当时,出现拐点,显然此时亮亮到达A地,利用速度路程时间可求出亮亮的速度及两人的速度和,二者做差后可得出明明的速度,进而得出A选项错误;
    B、根据第二次相遇时距离B地的距离明明的速度第二次相遇的时间、B两地间的距离,即可求出第二次相遇时距离B地800米,B选项正确;
    D、观察函数图象,可知:出发35分钟时亮亮到达A地,根据出发35分钟时两人间的距离明明的速度出发时间,即可求出出发35分钟时两人间的距离为2100米,D选项错误.
    【详解】
    解:第一次相遇两人共走了2800米,第二次相遇两人共走了米,且二者速度不变,

    出发20分时两人第一次相遇,C选项错误;
    亮亮的速度为米分,
    两人的速度和为米分,
    明明的速度为米分,A选项错误;
    第二次相遇时距离B地距离为米,B选项正确;
    出发35分钟时两人间的距离为米,D选项错误.
    故选:B.
    【点睛】
    本题考查了一次函数的应用,观察函数图象,逐一分析四个选项的正误是解题的关键.
    10、D
    【解析】
    根据抛物线和直线的关系分析.
    【详解】
    由抛物线图像可知,所以反比例函数应在二、四象限,一次函数过原点,应在二、四象限.
    故选D
    【点睛】
    考核知识点:反比例函数图象.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    解:连接AC,交y轴于D.∵四边形形OABC是菱形,∴AC⊥OB,OD=BD,AD=CD.∵OB=4,tan∠BOC=,∴OD=2,CD=1,∴A(﹣1,2),B(0,4),C(1,2).设菱形平移后B的坐标是(x,4),C的坐标是(1+x,2).∵B、C落在反比例函数的图象上,∴k=4x=2(1+x),解得:x=1,即菱形平移后B的坐标是(1,4),代入反比例函数的解析式得:k=1×4=4,即B、C落在反比例函数的图象上,菱形的平移距离是1,反比例函数的解析式是y=.故答案为y=.

    点睛:本题考查了菱形的性质,用待定系数法求反比例函数的解析式,平移的性质的应用,主要考查学生的计算能力.
    12、<
    【解析】
    先比较它们的平方,进而可比较与的大小.
    【详解】
    ()2=80,()2=100,
    ∵80<100,
    ∴<.
    故答案为:<.
    【点睛】
    本题考查了实数的大小比较,带二次根号的实数,在比较它们的大小时,通常先比较它们的平方的大小.
    13、
    【解析】
    分析:根据题意可以写出所有的可能性,然后将所有的可能性代入方程组和双曲线,找出符号要求的可能性,从而可以解答本题.
    详解:从﹣3,﹣1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,则(a,b)的所有可能性是:
    (﹣3,﹣1)、(﹣3,0)、(﹣3,1)、(﹣3,3)、
    (﹣1,﹣3)、(﹣1,0)、(﹣1,1)、(﹣1,3)、
    (0,﹣3)、(0,﹣1)、(0,1)、(0,3)、
    (1,﹣3)、(1,﹣1)、(1,0)、(1,3)、
    (3,﹣3)、(3,﹣1)、(3,0)、(3,1),将上面所有的可能性分别代入关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的是:(﹣3,1),(﹣1,3),(3,﹣1),故恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是:.故答案为.
    点睛:本题考查了列表法与树状图法,解题的关键是明确题意,写出所有的可能性.
    14、16或1
    【解析】
    题目给出等腰三角形有两条边长为5和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
    【详解】
    (1)当三角形的三边是5,5,6时,则周长是16;
    (2)当三角形的三边是5,6,6时,则三角形的周长是1;
    故它的周长是16或1.
    故答案为:16或1.
    【点睛】
    本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
    15、
    【解析】
    先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.
    【详解】
    如图,过点A作AF⊥BC于F,

    在Rt△ABC中,∠B=45°,
    ∴BC=AB=2,BF=AF=AB=1,
    ∵两个同样大小的含45°角的三角尺,
    ∴AD=BC=2,
    在Rt△ADF中,根据勾股定理得,DF==
    ∴CD=BF+DF-BC=1+-2=-1,
    故答案为-1.
    【点睛】
    此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.
    16、
    【解析】
    根据图形可得每增加一个金鱼就增加6根火柴棒即可解答.
    【详解】
    第一个图中有8根火柴棒组成,
    第二个图中有8+6个火柴棒组成,
    第三个图中有8+2×6个火柴组成,
    ……
    ∴组成n个系列正方形形的火柴棒的根数是8+6(n-1)=6n+2.
    故答案为6n+2
    【点睛】
    本题考查数字规律问题,通过归纳与总结,得到其中的规律是解题关键.

    三、解答题(共8题,共72分)
    17、(1)AC垂直平分BD;(2)四边形FMAN是矩形,理由见解析;(3)16+8或16﹣8
    【解析】
    (1)依据点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,即可得出AC垂直平分BD;
    (2)根据Rt△ABC中,点F为斜边BC的中点,可得AF=CF=BF,再根据等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,进而得出∠AMF=∠MAN=∠ANF=90°,即可判定四边形AMFN是矩形;
    (3)分两种情况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,②以点A为旋转中心将正方形ABCD顺时针旋转60°,分别依据旋转的性质以及勾股定理,即可得到结论.
    【详解】
    (1)∵AB=AD,CB=CD,
    ∴点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,
    ∴AC垂直平分BD,
    故答案为AC垂直平分BD;
    (2)四边形FMAN是矩形.理由:
    如图2,连接AF,

    ∵Rt△ABC中,点F为斜边BC的中点,
    ∴AF=CF=BF,
    又∵等腰三角形ABD 和等腰三角形ACE,
    ∴AD=DB,AE=CE,
    ∴由(1)可得,DF⊥AB,EF⊥AC,
    又∵∠BAC=90°,
    ∴∠AMF=∠MAN=∠ANF=90°,
    ∴四边形AMFN是矩形;
    (3)BD′的平方为16+8或16﹣8.
    分两种情况:
    ①以点A为旋转中心将正方形ABCD逆时针旋转60°,
    如图所示:过D'作D'E⊥AB,交BA的延长线于E,

    由旋转可得,∠DAD'=60°,
    ∴∠EAD'=30°,
    ∵AB=2=AD',
    ∴D'E=AD'=,AE=,
    ∴BE=2+,
    ∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8
    ②以点A为旋转中心将正方形ABCD顺时针旋转60°,
    如图所示:过B作BF⊥AD'于F,

    旋转可得,∠DAD'=60°,
    ∴∠BAD'=30°,
    ∵AB=2=AD',
    ∴BF=AB=,AF=,
    ∴D'F=2﹣,
    ∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8
    综上所述,BD′平方的长度为16+8或16﹣8.
    【点睛】
    本题属于四边形综合题,主要考查了正方形的性质,矩形的判定,旋转的性质,线段垂直平分线的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造直角三角形,依据勾股定理进行计算求解.解题时注意:有三个角是直角的四边形是矩形.
    18、(1)NC∥AB;理由见解析;(2)∠ABC=∠ACN;理由见解析;(3);
    【解析】
    (1)根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,证明△BAM≌△CAN,即可得到BM=CN.
    (2)根据△ABC,△AMN为等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根据相似三角形的性质得到,利用等腰三角形的性质得到∠BAC=∠MAN,根据相似三角形的性质即可得到结论;
    (3)如图3,连接AB,AN,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出,得到BM=2,CM=8,再根据勾股定理即可得到答案.
    【详解】
    (1)NC∥AB,理由如下:
    ∵△ABC与△MN是等边三角形,
    ∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
    ∴∠BAM=∠CAN,
    在△ABM与△ACN中,

    ∴△ABM≌△ACN(SAS),
    ∴∠B=∠ACN=60°,
    ∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,
    ∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,
    ∴CN∥AB;
    (2)∠ABC=∠ACN,理由如下:
    ∵=1且∠ABC=∠AMN,
    ∴△ABC~△AMN
    ∴,
    ∵AB=BC,
    ∴∠BAC=(180°﹣∠ABC),
    ∵AM=MN
    ∴∠MAN=(180°﹣∠AMN),
    ∵∠ABC=∠AMN,
    ∴∠BAC=∠MAN,
    ∴∠BAM=∠CAN,
    ∴△ABM~△ACN,
    ∴∠ABC=∠ACN;
    (3)如图3,连接AB,AN,
    ∵四边形ADBC,AMEF为正方形,
    ∴∠ABC=∠BAC=45°,∠MAN=45°,
    ∴∠BAC﹣∠MAC=∠MAN﹣∠MAC
    即∠BAM=∠CAN,
    ∵,
    ∴,
    ∴△ABM~△ACN
    ∴,
    ∴=cos45°=,
    ∴,
    ∴BM=2,
    ∴CM=BC﹣BM=8,
    在Rt△AMC,
    AM=,
    ∴EF=AM=2.

    【点睛】
    本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.
    19、(1)12米;(2)(2+8)米
    【解析】
    (1)设DE=x,先证明△ACE是直角三角形,∠CAE=60°,∠AEC=30°,得到AE=16,根据EF=8求出x的值得到答案;
    (2)延长NM交DB延长线于点P,先分别求出PB、CD得到PD,利用∠NDP=45°得到NP,即可求出MN.
    【详解】
    (1)如图,设DE=x,
    ∵AB=DF=4,∠ACB=30°,
    ∴AC=8,
    ∵∠ECD=60°,
    ∴△ACE是直角三角形,
    ∵AF∥BD,
    ∴∠CAF=30°,
    ∴∠CAE=60°,∠AEC=30°,
    ∴AE=16,
    ∴Rt△AEF中,EF=8,
    即x﹣4=8,
    解得x=12,
    ∴树DE的高度为12米;
    (2)延长NM交DB延长线于点P,则AM=BP=6,
    由(1)知CD=CE=×AC=4,BC=4,
    ∴PD=BP+BC+CD=6+4+4=6+8,
    ∵∠NDP=45°,且∠NPD=90°,
    ∴NP=PD=6+8,
    ∴NM=NP﹣MP=6+8﹣4=2+8,
    ∴食堂MN的高度为(2+8)米.

    【点睛】
    此题是解直角三角形的实际应用,考查直角三角形的性质,30°角所对的直角边等于斜边的一半,锐角三角函数,将已知的线段及角放在相应的直角三角形中利用三角函数解题,由此做相应的辅助线是解题的关键.
    20、1.
    【解析】
    直接利用绝对值的性质以及零指数幂的性质和负指数幂的性质分别化简得出答案.
    【详解】
    解:原式=﹣1++4﹣1﹣(﹣1)
    =﹣1++4﹣1﹣+1
    =1.
    【点睛】
    本题考查了实数的运算,零指数幂,负整数指数幂,解题的关键是掌握幂的运算法则.
    21、(1)①;②;(2)150+475+475.
    【解析】
    (1)①由条件可知AC为直径,可知BD长度的最大值为AC的长,可求得答案;②连接AC,求得AD2+CD2,利用不等式的性质可求得AD•CD的最大值,从而可求得四边形ABCD面积的最大值;
    (2)连接AC,延长CB,过点A做AE⊥CB交CB的延长线于E,可先求得△ABC的面积,结合条件可求得∠D=45°,且A、C、D三点共圆,作AC、CD中垂线,交点即为圆心O,当点D与AC的距离最大时,△ACD的面积最大,AC的中垂线交圆O于点D',交AC于F,FD'即为所求最大值,再求得
    △ACD′的面积即可.
    【详解】
    (1)①因为∠B=∠D=90°,所以四边形ABCD是圆内接四边形,AC为圆的直径,则BD长度的最大值为AC,此时BD=,
    ②连接AC,则AC2=AB2+BC2=a2+b2=AD2+CD2,S△ACD=AD×CD≤(AD2+CD2)=(a2+b2),所以四边形ABCD的最大面积=(a2+b2)+ab=;
    (2)如图,连接AC,延长CB,过点A作AE⊥CB交CB的延长线于E,因为AB=20,∠ABE=180°-∠ABC=60°,所以AE=AB×sin60°=10,EB=AB×cos60°=10,S△ABC=AE×BC=150,因为BC=30,所以EC=EB+BC=40,AC==10,因为∠ABC=120°,∠BAD+∠BCD=195°,所以∠D=45°,则△ACD中,∠D为定角,对边AC为定边,所以,A、C、D点在同一个圆上,做AC、CD中垂线,交点即为圆O,如图,

    当点D与AC的距离最大时,△ACD的面积最大,AC的中垂线交圆O于点D’,交AC于F,FD’即为所求最大值,连接OA、OC,∠AOC=2∠AD’C=90°,OA=OC,所以△AOC,△AOF等腰直角三角形,AO=OD’=5,OF=AF==5,D’F=5+5,S△ACD’=AC×D’F=5×(5+5)=475+475,所以Smax=S△ABC+S△ACD=150+475+475.
    【点睛】
    本题为圆的综合应用,涉及知识点有圆周角定理、不等式的性质、解直角三角形及转化思想等.在(1)中注意直径是最长的弦,在(2)中确定出四边形ABCD面积最大时,D点的位置是解题的关键.本题考查知识点较多,综合性很强,计算量很大,难度适中.
    22、(1)(3,3);(2)顶点 N 坐标为(,);(3)详见解析;(4)<n< .
    【解析】
    (1)由正方形的性质及A、B、D三点的坐标求得AD=BC=1即可得;
    (2)把(0,0)(n,0)代入y=-x2+bx+c求得b=n、c=0,据此可得函数解析式,配方成顶点式即可得出答案;
    (3)将点N的坐标代入y=x2,看是否符合解析式即可;
    (4)根据“小球发射之后能够直接入篮,球没有接触篮筐”知:当x=2时y>3,当x=3时y<2,据此列出关于n的不等式组,解之可得.
    【详解】
    (1)∵A(2,2),B(3,2),D(2,3),
    ∴AD=BC=1, 则点 C(3,3),
    故答案为:(3,3);
    (2)把(0,0)(n,0)代入 y=﹣x2+bx+c 得:

    解得:,
    ∴抛物线解析式为 y=﹣x2+nx=﹣(x﹣)2+,
    ∴顶点 N 坐标为(,);
    (3)由(2)把 x=代入 y=x2=()2= ,
    ∴抛物线的顶点在函数 y=x2的图象上运动;
    (4)根据题意,得:当 x=2 时 y>3,当 x=3 时 y<2, 即,
    解得: 【点睛】
    本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及将实际问题转化为二次函数的问题能力.
    23、(1);(2)m=3;(3)
    【解析】
    (1)本题需先根据图象过A点,代入即可求出解析式;(2)由△OAB∽△PAN可用m表示出PN,且可表示出PM,由条件可得到关于m的方程,则可求得m的值;(3)在y轴上取一点Q,使,可证的△P2OB∽△QOP2,则可求得Q点坐标,则可把AP2+BP2转换为AP2+QP2,利用三角形三边关系可知当A、P2、Q三点在一条线上时,有最小值,则可求出答案.
    【详解】
    解:(1)∵A(4,0)在抛物线上,
    ∴0=16a+4(a+2)+2,解得a=﹣,
    ∴抛物线的解析式为y=;
    (2)∵
    ∴令x=0可得y=2,
    ∴OB=2,
    ∵OP=m,
    ∴AP=4﹣m,
    ∵PM⊥x轴,
    ∴△OAB∽△PAN,
    ∴,
    ∴,
    ∴,
    ∵M在抛物线上,
    ∴PM=+2,
    ∵PN:MN=1:3,
    ∴PN:PM=1:4,
    ∴,
    解得m=3或m=4(舍去);
    (3)在y轴上取一点Q,使,如图,

    由(2)可知P1(3,0),且OB=2,
    ∴,且∠P2OB=∠QOP2,
    ∴△P2OB∽△QOP2,
    ∴,
    ∴当Q(0,)时,QP2=,
    ∴AP2+BP2=AP2+QP2≥AQ,
    ∴当A、P2、Q三点在一条线上时,AP2+QP2有最小值,
    ∵A(4,0),Q(0,),
    ∴AQ==,
    即AP2+BP2的最小值为
    【点睛】
    本题考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里表示三角形的面积及线段和最小值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,难度相对较大.
    24、 (1)抛物线的解析式为:y=﹣x1+x+1
    (1)存在,P1(,2),P1(,),P3(,﹣)
    (3)当点E运动到(1,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.
    【解析】
    试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;
    (1)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P1,P3;作CH垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;
    (3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF可求出S与a的关系式,由二次函数的性质就可以求出结论.
    试题解析:(1)∵抛物线y=﹣x1+mx+n经过A(﹣1,0),C(0,1).
    解得:,
    ∴抛物线的解析式为:y=﹣x1+x+1;
    (1)∵y=﹣x1+x+1,

    ∴y=﹣(x﹣)1+,
    ∴抛物线的对称轴是x=.
    ∴OD=.
    ∵C(0,1),
    ∴OC=1.
    在Rt△OCD中,由勾股定理,得
    CD=.
    ∵△CDP是以CD为腰的等腰三角形,
    ∴CP1=CP1=CP3=CD.
    作CH⊥x轴于H,
    ∴HP1=HD=1,
    ∴DP1=2.
    ∴P1(,2),P1(,),P3(,﹣);
    (3)当y=0时,0=﹣x1+x+1
    ∴x1=﹣1,x1=2,
    ∴B(2,0).
    设直线BC的解析式为y=kx+b,由图象,得

    解得:,
    ∴直线BC的解析式为:y=﹣x+1.
    如图1,过点C作CM⊥EF于M,设E(a,﹣a+1),F(a,﹣a1+a+1),
    ∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).
    ∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,
    =+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),
    =﹣a1+2a+(0≤x≤2).
    =﹣(a﹣1)1+
    ∴a=1时,S四边形CDBF的面积最大=,
    ∴E(1,1).

    考点:1、勾股定理;1、等腰三角形的性质;3、四边形的面积;2、二次函数的最值

    相关试卷

    浙江杭州经济开发区六校联考2021-2022学年毕业升学考试模拟卷数学卷含解析: 这是一份浙江杭州经济开发区六校联考2021-2022学年毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了老师在微信群发了这样一个图,在平面直角坐标系中,点P等内容,欢迎下载使用。

    广东省广州市越秀区育才实验校2022年毕业升学考试模拟卷数学卷含解析: 这是一份广东省广州市越秀区育才实验校2022年毕业升学考试模拟卷数学卷含解析,共18页。试卷主要包含了下列四个命题中,真命题是,下列事件中,必然事件是等内容,欢迎下载使用。

    2022年福建省鲤城区六校联考毕业升学考试模拟卷数学卷含解析: 这是一份2022年福建省鲤城区六校联考毕业升学考试模拟卷数学卷含解析,共23页。试卷主要包含了的值等于等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map