|试卷下载
终身会员
搜索
    上传资料 赚现金
    广东省佛山市石门中学2021-2022学年十校联考最后数学试题含解析
    立即下载
    加入资料篮
    广东省佛山市石门中学2021-2022学年十校联考最后数学试题含解析01
    广东省佛山市石门中学2021-2022学年十校联考最后数学试题含解析02
    广东省佛山市石门中学2021-2022学年十校联考最后数学试题含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省佛山市石门中学2021-2022学年十校联考最后数学试题含解析

    展开
    这是一份广东省佛山市石门中学2021-2022学年十校联考最后数学试题含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,的值是,﹣3的绝对值是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是,,则在本次测试中,成绩更稳定的同学是(  )
    A.甲 B.乙 C.甲乙同样稳定 D.无法确定
    2.下列计算正确的是(  )
    A.﹣5x﹣2x=﹣3x B.(a+3)2=a2+9 C.(﹣a3)2=a5 D.a2p÷a﹣p=a3p
    3.如图,点O′在第一象限,⊙O′与x轴相切于H点,与y轴相交于A(0,2),B(0,8),则点O′的坐标是(  )

    A.(6,4) B.(4,6) C.(5,4) D.(4,5)
    4.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为(  )

    A.75° B.60° C.55° D.45°
    5.如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=120°,则∠D的度数为(  )

    A.30° B.60° C.50° D.40°
    6.一个几何体的三视图如图所示,这个几何体是(  )

    A.棱柱 B.正方形 C.圆柱 D.圆锥
    7.的值是
    A. B. C. D.
    8.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是( )

    A.AB=BE B.BE⊥DC C.∠ADB=90° D.CE⊥DE
    9.如图,O为直线 AB上一点,OE平分∠BOC,OD⊥OE 于点 O,若∠BOC=80°,则∠AOD的度数是( )

    A.70° B.50° C.40° D.35°
    10.﹣3的绝对值是(  )
    A.﹣3 B.3 C.- D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.正方形EFGH的顶点在边长为3的正方形ABCD边上,若AE=x,正方形EFGH的面积为y,则y与x的函数关系式为______.

    12.如图,矩形ABCD中,AD=5,∠CAB=30°,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是___________.

    13.如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm.

    14.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为   .

    15.如图所示,数轴上点A所表示的数为a,则a的值是____.

    16.因式分解:9x﹣x2=_____.
    17.抛物线y=﹣x2+4x﹣1的顶点坐标为 .
    三、解答题(共7小题,满分69分)
    18.(10分)如图,AB是⊙O的直径,点C是弧AB的中点,点D是⊙O外一点,AD=AB,AD交⊙O于F,BD交⊙O于E,连接CE交AB于G.
    (1)证明:∠C=∠D;
    (2)若∠BEF=140°,求∠C的度数;
    (3)若EF=2,tanB=3,求CE•CG的值.

    19.(5分)如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上.求斜坡CD的高度DE;求大楼AB的高度;(参考数据:sin64°≈0.9,tan64°≈2).

    20.(8分)观察下列各个等式的规律:
    第一个等式:=1,第二个等式: =2,第三个等式:=3…
    请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.
    21.(10分)问题探究
    (1)如图1,△ABC和△DEC均为等腰直角三角形,且∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,连接AD、BE,求的值;
    (2)如图2,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4,过点A作AM⊥AB,点P是射线AM上一动点,连接CP,做CQ⊥CP交线段AB于点Q,连接PQ,求PQ的最小值;

    (3)李师傅准备加工一个四边形零件,如图3,这个零件的示意图为四边形ABCD,要求BC=4cm,∠BAD=135°,∠ADC=90°,AD=CD,请你帮李师傅求出这个零件的对角线BD的最大值.

    图3
    22.(10分)如图,已知⊙O,请用尺规做⊙O的内接正四边形ABCD,(保留作图痕迹,不写做法)

    23.(12分)如图,抛物线l:y=(x﹣h)2﹣2与x轴交于A,B两点(点A在点B的左侧),将抛物线ι在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数ƒ的图象.
    (1)若点A的坐标为(1,0).
    ①求抛物线l的表达式,并直接写出当x为何值时,函数ƒ的值y随x的增大而增大;
    ②如图2,若过A点的直线交函数ƒ的图象于另外两点P,Q,且S△ABQ=2S△ABP,求点P的坐标;
    (2)当2<x<3时,若函数f的值随x的增大而增大,直接写出h的取值范围.
    24.(14分)如图所示,平面直角坐标系中,O为坐标原点,二次函数的图象与x轴交于、B两点,与y轴交于点C;
    (1)求c与b的函数关系式;
    (2)点D为抛物线顶点,作抛物线对称轴DE交x轴于点E,连接BC交DE于F,若AE=DF,求此二次函数解析式;
    (3)在(2)的条件下,点P为第四象限抛物线上一点,过P作DE的垂线交抛物线于点M,交DE于H,点Q为第三象限抛物线上一点,作于N,连接MN,且,当时,连接PC,求的值.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    【详解】
    ∵S甲2=1.4,S乙2=2.5,
    ∴S甲2<S乙2,
    ∴甲、乙两名同学成绩更稳定的是甲;
    故选A.
    【点睛】
    本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    2、D
    【解析】
    直接利用合并同类项法则以及完全平方公式和整式的乘除运算法则分别计算即可得出答案.
    【详解】
    解:A.﹣5x﹣2x=﹣7x,故此选项错误;
    B.(a+3)2=a2+6a+9,故此选项错误;
    C.(﹣a3)2=a6,故此选项错误;
    D.a2p÷a﹣p=a3p,正确.
    故选D.
    【点睛】
    本题主要考查了合并同类项以及完全平方公式和整式的乘除运算,正确掌握运算法则是解题的关键.
    3、D
    【解析】
    过O'作O'C⊥AB于点C,过O'作O'D⊥x轴于点D,由切线的性质可求得O'D的长,则可得O'B的长,由垂径定理可求得CB的长,在Rt△O'BC中,由勾股定理可求得O'C的长,从而可求得O'点坐标.
    【详解】

    如图,过O′作O′C⊥AB于点C,过O′作O′D⊥x轴于点D,连接O′B,
    ∵O′为圆心,
    ∴AC=BC,
    ∵A(0,2),B(0,8),
    ∴AB=8−2=6,
    ∴AC=BC=3,
    ∴OC=8−3=5,
    ∵⊙O′与x轴相切,
    ∴O′D=O′B=OC=5,
    在Rt△O′BC中,由勾股定理可得O′C===4,
    ∴P点坐标为(4,5),
    故选:D.
    【点睛】
    本题考查了切线的性质,坐标与图形性质,解题的关键是掌握切线的性质和坐标计算.
    4、B
    【解析】
    由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和定理得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴∠BAD=90°,AB=AD,∠BAF=45°,
    ∵△ADE是等边三角形,
    ∴∠DAE=60°,AD=AE,
    ∴∠BAE=90°+60°=150°,AB=AE,
    ∴∠ABE=∠AEB=(180°﹣150°)=15°,
    ∴∠BFC=∠BAF+∠ABE=45°+15°=60°;
    故选:B.
    【点睛】
    本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.
    5、A
    【解析】
    分析:根据平行线的性质求出∠C,求出∠DEC的度数,根据三角形内角和定理求出∠D的度数即可.
    详解:∵AB∥CD,∴∠A+∠C=180°.
    ∵∠A=120°,∴∠C=60°.
    ∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=30°.
    故选A.
    点睛:本题考查了平行线的性质和三角形内角和定理的应用,能根据平行线的性质求出∠C的度数是解答此题的关键.
    6、C
    【解析】试题解析:根据主视图和左视图为矩形可判断出该几何体是柱体,
    根据俯视图是圆可判断出该几何体为圆柱.
    故选C.
    7、D
    【解析】
    根据特殊角三角函数值,可得答案.
    【详解】
    解:,
    故选:D.
    【点睛】
    本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
    8、B
    【解析】
    先证明四边形DBCE为平行四边形,再根据矩形的判定进行解答.
    【详解】
    ∵四边形ABCD为平行四边形,
    ∴AD∥BC,AD=BC,
    又∵AD=DE,
    ∴DE∥BC,且DE=BC,
    ∴四边形BCED为平行四边形,
    A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;
    B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;
    C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;
    D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误,
    故选B.
    【点睛】
    本题考查了平行四边形的性质与判定,矩形的判定等,熟练掌握相关的判定定理与性质定理是解题的关键.
    9、B
    【解析】
    分析:由OE是∠BOC的平分线得∠COE=40°,由OD⊥OE得∠DOC=50°,从而可求出∠AOD的度数.
    详解:∵OE是∠BOC的平分线,∠BOC=80°,
    ∴∠COE=∠BOC=×80°=40°,
    ∵OD⊥OE
    ∴∠DOE=90°,
    ∴∠DOC=∠DOE-∠COE=90°-40°=50°,
    ∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.
    故选B.
    点睛:本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.性质:若OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.
    10、B
    【解析】
    根据负数的绝对值是它的相反数,可得出答案.
    【详解】
    根据绝对值的性质得:|-1|=1.
    故选B.
    【点睛】
    本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.

    二、填空题(共7小题,每小题3分,满分21分)
    11、y=2x2﹣6x+2
    【解析】
    由AAS证明△DHE≌△AEF,得出DE=AF=x,DH=AE=1-x,再根据勾股定理,求出EH2,即可得到y与x之间的函数关系式.
    【详解】
    如图所示:

    ∵四边形ABCD是边长为1的正方形,
    ∴∠A=∠D=20°,AD=1.
    ∴∠1+∠2=20°,
    ∵四边形EFGH为正方形,
    ∴∠HEF=20°,EH=EF.
    ∴∠1+∠1=20°,
    ∴∠2=∠1,
    在△AHE与△BEF中

    ∴△DHE≌△AEF(AAS),
    ∴DE=AF=x,DH=AE=1-x,
    在Rt△AHE中,由勾股定理得:
    EH2=DE2+DH2=x2+(1-x)2=2x2-6x+2;
    即y=2x2-6x+2(0<x<1),
    故答案为y=2x2-6x+2.
    【点睛】
    本题考查了正方形的性质、全等三角形的判定与性质、勾股定理,本题难度适中,求出y与x之间的函数关系式是解题的关键.
    12、5
    【解析】
    作点A关于直线CD的对称点E,作EP⊥AC于P,交CD于点Q,此时QA+QP最短,由QA+QP=QE+PQ=PE可知,求出PE即可解决问题.
    【详解】
    解:作点A关于直线CD的对称点E,作EP⊥AC于P,交CD于点Q.

    ∵四边形ABCD是矩形,
    ∴∠ADC=90°,
    ∴DQ⊥AE,∵DE=AD,
    ∴QE=QA,
    ∴QA+QP=QE+QP=EP,
    ∴此时QA+QP最短(垂线段最短),
    ∵∠CAB=30°,
    ∴∠DAC=60°,
    在Rt△APE中,∵∠APE=90°,AE=2AD=10,
    ∴EP=AE•sin60°=10×=5.
    故答案为5.
    【点睛】
    本题考查矩形的性质、最短问题、锐角三角函数等知识,解题的关键是利用对称以及垂线段最短找到点P、Q的位置,属于中考常考题型.
    13、1
    【解析】
    要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.
    【详解】
    解:将长方体展开,连接A、B′,
    ∵AA′=1+3+1+3=8(cm),A′B′=6cm,
    根据两点之间线段最短,AB′==1cm.
    故答案为1.

    考点:平面展开-最短路径问题.
    14、-6
    【解析】
    分析:∵菱形的两条对角线的长分别是6和4,
    ∴A(﹣3,2).
    ∵点A在反比例函数的图象上,
    ∴,解得k=-6.
    【详解】
    请在此输入详解!
    15、
    【解析】
    根据数轴上点的特点和相关线段的长,利用勾股定理求出斜边的长,即知表示0的点和A之间的线段的长,进而可推出A的坐标.
    【详解】
    ∵直角三角形的两直角边为1,2,
    ∴斜边长为,
    那么a的值是:﹣.
    故答案为.
    【点睛】
    此题主要考查了实数与数轴之间的对应关系,其中主要利用了:已知两点间的距离,求较大的数,就用较小的数加上两点间的距离.
    16、x(9﹣x)
    【解析】
    试题解析:
    故答案为
    点睛:常见的因式分解的方法:提取公因式法,公式法,十字相乘法.
    17、(2,3)
    【解析】
    试题分析:利用配方法将抛物线的解析式y=﹣x2+4x﹣1转化为顶点式解析式y=﹣(x﹣2)2+3,然后求其顶点坐标为:(2,3).
    考点:二次函数的性质

    三、解答题(共7小题,满分69分)
    18、(1)见解析;(2)70°;(3)1.
    【解析】
    (1)先根据等边对等角得出∠B=∠D,即可得出结论;
    (2)先判断出∠DFE=∠B,进而得出∠D=∠DFE,即可求出∠D=70°,即可得出结论;
    (3)先求出BE=EF=2,进而求AE=6,即可得出AB,进而求出AC,再判断出△ACG∽△ECA,即可得出结论.
    【详解】
    (1)∵AB=AD,
    ∴∠B=∠D,
    ∵∠B=∠C,
    ∴∠C=∠D;
    (2)∵四边形ABEF是圆内接四边形,
    ∴∠DFE=∠B,
    由(1)知,∠B=∠D,
    ∴∠D=∠DFE,
    ∵∠BEF=140°=∠D+∠DFE=2∠D,
    ∴∠D=70°,
    由(1)知,∠C=∠D,
    ∴∠C=70°;
    (3)如图,由(2)知,∠D=∠DFE,
    ∴EF=DE,
    连接AE,OC,
    ∵AB是⊙O的直径,
    ∴∠AEB=90°,
    ∴BE=DE,
    ∴BE=EF=2,
    在Rt△ABE中,tanB==3,
    ∴AE=3BE=6,根据勾股定理得,AB=,
    ∴OA=OC=AB=,
    ∵点C是 的中点,
    ∴ ,
    ∴∠AOC=90°,
    ∴AC=OA=2,
    ∵,
    ∴∠CAG=∠CEA,
    ∵∠ACG=∠ECA,
    ∴△ACG∽△ECA,
    ∴,
    ∴CE•CG=AC2=1.

    【点睛】
    本题是几何综合题,涉及了圆的性质,圆周角定理,勾股定理,锐角三角函数,相似三角形的判定和性质,圆内接四边形的性质,等腰三角形的性质等,综合性较强,有一定的难度,熟练掌握和灵活运用相关知识是解题的关键.本题中求出BE=2也是解题的关键.
    19、(1)斜坡CD的高度DE是5米;(2)大楼AB的高度是34米.
    【解析】
    试题分析:(1)根据在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,高为DE,可以求得DE的高度;
    (2)根据锐角三角函数和题目中的数据可以求得大楼AB的高度.
    试题解析:(1)∵在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,
    ∴,
    设DE=5x米,则EC=12x米,
    ∴(5x)2+(12x)2=132,
    解得:x=1,
    ∴5x=5,12x=12,
    即DE=5米,EC=12米,
    故斜坡CD的高度DE是5米;
    (2)过点D作AB的垂线,垂足为H,设DH的长为x,
    由题意可知∠BDH=45°,
    ∴BH=DH=x,DE=5,
    在直角三角形CDE中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,
    ∵tan64°=,
    ∴2=,
    解得,x=29,AB=x+5=34,
    即大楼AB的高度是34米.
    20、(1)=4;(2)=n.
    【解析】
    试题分析:(1)根据题目中的式子的变化规律可以写出第四个等式;
    (2)根据题目中的式子的变化规律可以猜想出第n等式并加以证明.
    试题解析:解:(1)由题目中式子的变化规律可得,第四个等式是:=4;
    (2)第n个等式是:=n.证明如下:
    ∵= = =n
    ∴第n个等式是:=n.
    点睛:本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子.
    21、(1);(2);(3)+.
    【解析】
    (1)由等腰直角三角形的性质可得BC=3,CE=,∠ACB=∠DCE=45°,可证△ACD∽△BCE,可得=;
    (2)由题意可证点A,点Q,点C,点P四点共圆,可得∠QAC=∠QPC,可证△ABC∽△PQC,可得,可得当QC⊥AB时,PQ的值最小,即可求PQ的最小值;
    (3)作∠DCE=∠ACB,交射线DA于点E,取CE中点F,连接AC,BE,DF,BF,由题意可证△ABC∽△DEC,可得,且∠BCE=∠ACD,可证△BCE∽△ACD,可得∠BEC=∠ADC=90°,由勾股定理可求CE,DF,BF的长,由三角形三边关系可求BD的最大值.
    【详解】
    (1)∵∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,
    ∴BC=3,CE=,∠ACB=∠DCE=45°,
    ∴∠BCE=∠ACD,
    ∵==,=,
    ∴=,∠BCE=∠ACD,
    ∴△ACD∽△BCE,
    ∴=;
    (2)∵∠ACB=90°,∠B=30°,BC=4,
    ∴AC=,AB=2AC=,
    ∵∠QAP=∠QCP=90°,
    ∴点A,点Q,点C,点P四点共圆,
    ∴∠QAC=∠QPC,且∠ACB=∠QCP=90°,
    ∴△ABC∽△PQC,
    ∴,
    ∴PQ=×QC=QC,
    ∴当QC的长度最小时,PQ的长度最小,
    即当QC⊥AB时,PQ的值最小,
    此时QC=2,PQ的最小值为;
    (3)如图,作∠DCE=∠ACB,交射线DA于点E,取CE中点F,连接AC,BE,DF,BF,

    ∵∠ADC=90°,AD=CD,
    ∴∠CAD=45°,∠BAC=∠BAD-∠CAD=90°,
    ∴△ABC∽△DEC,
    ∴,
    ∵∠DCE=∠ACB,
    ∴∠BCE=∠ACD,
    ∴△BCE∽△ACD,
    ∴∠BEC=∠ADC=90°,
    ∴CE=BC=2,
    ∵点F是EC中点,
    ∴DF=EF=CE=,
    ∴BF==,
    ∴BD≤DF+BF=+
    【点睛】
    本题是相似综合题,考查了等腰直角三角形的性质,勾股定理,相似三角形的判定和性质等知识,添加恰当辅助线构造相似三角形是本题的关键.
    22、见解析
    【解析】
    根据内接正四边形的作图方法画出图,保留作图痕迹即可.
    【详解】

    任作一条直径,再作该直径的中垂线,顺次连接圆上的四点即可.
    【点睛】
    此题重点考察学生对圆内接正四边形作图的应用,掌握圆内接正四边形的作图方法是解题的关键.
    23、(1)①当1<x<3或x>5时,函数ƒ的值y随x的增大而增大,②P(,);(2)当3≤h≤4或h≤0时,函数f的值随x的增大而增大.
    【解析】
    试题分析:(1)①利用待定系数法求抛物线的解析式,由对称性求点B的坐标,根据图象写出函数ƒ的值y随x的增大而增大(即呈上升趋势)的x的取值;
    ②如图2,作辅助线,构建对称点F和直角角三角形AQE,根据S△ABQ=2S△ABP,得QE=2PD,证明△PAD∽△QAE,则,得AE=2AD,设AD=a,根据QE=2FD列方程可求得a的值,并计算P的坐标;
    (2)先令y=0求抛物线与x轴的两个交点坐标,根据图象中呈上升趋势的部分,有两部分:分别讨论,并列不等式或不等式组可得h的取值.
    试题解析:(1)①把A(1,0)代入抛物线y=(x﹣h)2﹣2中得:
    (x﹣h)2﹣2=0,解得:h=3或h=﹣1,
    ∵点A在点B的左侧,∴h>0,∴h=3,
    ∴抛物线l的表达式为:y=(x﹣3)2﹣2,
    ∴抛物线的对称轴是:直线x=3,
    由对称性得:B(5,0),
    由图象可知:当1<x<3或x>5时,函数ƒ的值y随x的增大而增大;
    ②如图2,作PD⊥x轴于点D,延长PD交抛物线l于点F,作QE⊥x轴于E,则PD∥QE,
    由对称性得:DF=PD,
    ∵S△ABQ=2S△ABP,∴AB•QE=2×AB•PD,∴QE=2PD,
    ∵PD∥QE,∴△PAD∽△QAE,∴,∴AE=2AD,
    设AD=a,则OD=1+a,OE=1+2a,P(1+a,﹣[(1+a﹣3)2﹣2]),
    ∵点F、Q在抛物线l上,
    ∴PD=DF=﹣[(1+a﹣3)2﹣2],QE=(1+2a﹣3)2﹣2,
    ∴(1+2a﹣3)2﹣2=﹣2[(1+a﹣3)2﹣2],
    解得:a=或a=0(舍),∴P(,);

    (2)当y=0时,(x﹣h)2﹣2=0,
    解得:x=h+2或h﹣2,
    ∵点A在点B的左侧,且h>0,∴A(h﹣2,0),B(h+2,0),
    如图3,作抛物线的对称轴交抛物线于点C,
    分两种情况:
    ①由图象可知:图象f在AC段时,函数f的值随x的增大而增大,
    则,∴3≤h≤4,
    ②由图象可知:图象f点B的右侧时,函数f的值随x的增大而增大,
    即:h+2≤2,h≤0,
    综上所述,当3≤h≤4或h≤0时,函数f的值随x的增大而增大.

    考点:待定系数法求二次函数的解析式;二次函数的增减性问题、三角形相似的性质和判定;一元二次方程;一元一次不等式组.
    24、(1);(2);(3)
    【解析】
    (1)把A(-1,0)代入y=x2-bx+c,即可得到结论;
    (2)由(1)得,y=x2-bx-1-b,求得EO=,AE=+1=BE,于是得到OB=EO+BE=++1=b+1,当x=0时,得到y=-b-1,根据等腰直角三角形的性质得到D(,-b-2),将D(,-b-2)代入y=x2-bx-1-b解方程即可得到结论;
    (3)连接QM,DM,根据平行线的判定得到QN∥MH,根据平行线的性质得到∠NMH=∠QNM,根据已知条件得到∠QMN=∠MQN,设QN=MN=t,求得Q(1-t,t2-4),得到DN=t2-4-(-4)=t2,同理,设MH=s,求得NH=t2-s2,根据勾股定理得到NH=1,根据三角函数的定义得到∠NMH=∠MDH推出∠NMD=90°;根据三角函数的定义列方程得到t1=,t2=-(舍去),求得MN=,根据三角函数的定义即可得到结论.
    【详解】
    (1)把A(﹣1,0)代入,
    ∴,
    ∴;
    (2)由(1)得,,
    ∵点D为抛物线顶点,
    ∴,
    ∴,
    当时,,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    将代入得,,
    解得:,(舍去),
    ∴二次函数解析式为:;
    (3)连接QM,DM,

    ∵,,
    ∴,∴,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,设,则,
    ∴,同理,
    设,则,∴,
    在中,,
    ∴,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴;
    ∵,
    ∴,,
    ∵,
    ∴,即,
    解得:,(舍去),
    ∴,
    ∵,
    ∴,
    ∴,
    当时,,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,,,
    过P作于T,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题考查了待定系数法求二次函数的解析式,平行线的性质,三角函数的定义,勾股定理,正确的作出辅助线构造直角三角形是解题的关键.

    相关试卷

    广东省汕头市龙湖实验中学2021-2022学年十校联考最后数学试题含解析: 这是一份广东省汕头市龙湖实验中学2021-2022学年十校联考最后数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    广东省肇庆市端州区端州区南国中学英文校2021-2022学年十校联考最后数学试题含解析: 这是一份广东省肇庆市端州区端州区南国中学英文校2021-2022学年十校联考最后数学试题含解析,共21页。

    2021-2022学年佳木斯市重点中学十校联考最后数学试题含解析: 这是一份2021-2022学年佳木斯市重点中学十校联考最后数学试题含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map