广东省佛山市南海区新芳华校2021-2022学年中考数学模拟精编试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,OP平分∠AOB,PC⊥OA于C,点D是OB上的动点,若PC=6cm,则PD的长可以是( )
A.7cm B.4cm C.5cm D.3cm
2.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为( )
A.6 B.5 C.2 D.3
3.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是( )
A. B.
C. D.
4.如图,已知二次函数y=ax2+bx的图象与正比例函数y=kx的图象相交于点A(1,2),有下面四个结论:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正确的是( )
A.①② B.②③ C.①④ D.③④
5.下列计算正确的是( )
A.a2+a2=a4 B.a5•a2=a7 C.(a2)3=a5 D.2a2﹣a2=2
6.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )
A. B. C. D.
7.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为( )
A.60 n mile B.60 n mile C.30 n mile D.30 n mile
8.如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是( )
A.30° B.15° C.18° D.20°
9.如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值为
A.1 B. C. D.
10.计算(ab2)3的结果是( )
A.ab5 B.ab6 C.a3b5 D.a3b6
二、填空题(共7小题,每小题3分,满分21分)
11.自2008年9月南水北调中线京石段应急供水工程通水以来,截至2018年5月8日5时52分,北京市累计接收河北四库来水和丹江口水库来水达50亿立方米.已知丹江口水库来水量比河北四库来水量的2倍多1.82亿立方米,求河北四库来水量.设河北四库来水量为x亿立方米,依题意,可列一元一次方程为_____.
12.为了了解贯彻执行国家提倡的“阳光体育运动”的实施情况,将某班50名同学一周的体育锻炼情况绘制成了如图所示的条形统计图,根据统计图提供的数据,该班50名同学一周参加体育锻炼时间的中位数与众数之和为_____.
13.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为_____.
14.一个n边形的每个内角都为144°,则边数n为______.
15.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是___.
16.如图,正△的边长为,点、在半径为的圆上,点在圆内,将正绕点逆时针针旋转,当点第一次落在圆上时,旋转角的正切值为_______________
17.如图所示,P为∠α的边OA上一点,且P点的坐标为(3,4),则sinα+cosα=_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,AB、AD是⊙O的弦,△ABC是等腰直角三角形,△ADC≌△AEB,请仅用无刻度直尺作图:在图1中作出圆心O;在图2中过点B作BF∥AC.
19.(5分)如图,抛物线与x轴相交于A、B两点,与y轴的交于点C,其中A点的坐标为(﹣3,0),点C的坐标为(0,﹣3),对称轴为直线x=﹣1.
(1)求抛物线的解析式;
(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;
(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.
20.(8分)如图,在平面直角坐标系xOy中,直线与x轴交于点A,与双曲线的一个交点为B(-1,4).求直线与双曲线的表达式;过点B作BC⊥x轴于点C,若点P在双曲线上,且△PAC的面积为4,求点P的坐标.
21.(10分)计算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.
22.(10分)已知:如图,在平行四边形中,的平分线交于点,过点作的垂线交于点,交延长线于点,连接,.
求证:; 若,,, 求的长.
23.(12分)某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角∠ABC为45°,原坡脚B与场馆中央的运动区边界的安全距离BD为5米.如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角∠EFG为37°.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即FD≥2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:sin37°≈,tan37°≈)
24.(14分)如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.
(1)求证:AB=AC;
(2)若,求⊙O的半径.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
过点P作PD⊥OB于D,根据角平分线上的点到角的两边距离相等可得PC=PD,再根据垂线段最短解答即可.
【详解】
解:作PD⊥OB于D,
∵OP平分∠AOB,PC⊥OA,PD⊥OA,
∴PD=PC=6cm,
则PD的最小值是6cm,
故选A.
【点睛】
考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.
2、C
【解析】
由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AE=3,即可求得AB的长.
【详解】
∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵BE:ED=1:3,
∴BE:OB=1:2,
∵AE⊥BD,
∴AB=OA,
∴OA=AB=OB,
即△OAB是等边三角形,
∴∠ABD=60°,
∵AE⊥BD,AE=3,
∴AB=,
故选C.
【点睛】
此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明△OAB是等边三角形是解题关键.
3、C
【解析】
分析:设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x的分式方程.
详解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,
依题意得:,即.
故选C.
点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.
4、B
【解析】
根据抛物线图象性质确定a、b符号,把点A代入y=ax2+bx得到a与b数量关系,代入②,不等式kx≤ax2+bx的解集可以转化为函数图象的高低关系.
【详解】
解:根据图象抛物线开口向上,对称轴在y轴右侧,则a>0,b<0,则①错误
将A(1,2)代入y=ax2+bx,则2=9a+1b
∴b=,
∴a﹣b=a﹣()=4a﹣>-,故②正确;
由正弦定义sinα=,则③正确;
不等式kx≤ax2+bx从函数图象上可视为抛物线图象不低于直线y=kx的图象
则满足条件x范围为x≥1或x≤0,则④错误.
故答案为:B.
【点睛】
二次函数的图像,sinα公式,不等式的解集.
5、B
【解析】
根据整式的加减乘除乘方运算法则逐一运算即可。
【详解】
A. ,故A选项错误。
B. ,故B选项正确。
C.,故C选项错误。
D. ,故D选项错误。
故答案选B.
【点睛】
本题考查整式加减乘除运算法则,只需熟记法则与公式即可。
6、D
【解析】试题分析:俯视图是从上面看到的图形.
从上面看,左边和中间都是2个正方形,右上角是1个正方形,
故选D.
考点:简单组合体的三视图
7、B
【解析】
如图,作PE⊥AB于E.
在Rt△PAE中,∵∠PAE=45°,PA=60n mile,
∴PE=AE=×60=n mile,
在Rt△PBE中,∵∠B=30°,
∴PB=2PE=n mile.
故选B.
8、C
【解析】
∠1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.
【详解】
∵正五边形的内角的度数是×(5-2)×180°=108°,正方形的内角是90°,
∴∠1=108°-90°=18°.故选C
【点睛】
本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键.
9、C
【解析】
作点A关于MN的对称点A′,连接A′B,交MN于点P,则PA+PB最小,
连接OA′,AA′.
∵点A与A′关于MN对称,点A是半圆上的一个三等分点,
∴∠A′ON=∠AON=60°,PA=PA′,
∵点B是弧AN∧的中点,
∴∠BON=30 °,
∴∠A′OB=∠A′ON+∠BON=90°,
又∵OA=OA′=1,
∴A′B=
∴PA+PB=PA′+PB=A′B=
故选:C.
10、D
【解析】
试题分析:根据积的乘方的性质进行计算,然后直接选取答案即可.
试题解析:(ab2)3=a3•(b2)3=a3b1.
故选D.
考点:幂的乘方与积的乘方.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
【分析】河北四库来水量为x亿立方米,根据等量关系:河北四库来水和丹江口水库来水达50亿立方米,列方程即可得.
【详解】河北四库来水量为x亿立方米,则丹江口水库来水量为(2x+1.82)亿立方米,
由题意得:x+(2x+1.82)=50,
故答案为x+(2x+1.82)=50.
【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列出方程是关键.
12、17
【解析】
∵8是出现次数最多的,∴众数是8,
∵这组数据从小到大的顺序排列,处于中间位置的两个数都是9,∴中位数是9,
所以中位数与众数之和为8+9=17.
故答案为17小时.
13、(,0)
【解析】
试题解析:过点B作BD⊥x轴于点D,
∵∠ACO+∠BCD=90°,
∠OAC+∠ACO=90°,
∴∠OAC=∠BCD,
在△ACO与△BCD中,
,
∴△ACO≌△BCD(AAS)
∴OC=BD,OA=CD,
∵A(0,2),C(1,0)
∴OD=3,BD=1,
∴B(3,1),
∴设反比例函数的解析式为y=,
将B(3,1)代入y=,
∴k=3,
∴y=,
∴把y=2代入y=,
∴x=,
当顶点A恰好落在该双曲线上时,
此时点A移动了个单位长度,
∴C也移动了个单位长度,
此时点C的对应点C′的坐标为(,0)
故答案为(,0).
14、10
【解析】
解:因为正多边形的每个内角都相等,每个外角都相等,根据相邻两个内角和外角关系互补,可以求出这个多边形的每个外角等于36°,因为多边形的外角和是360°,所以这个多边形的边数等于360°÷36°=10,
故答案为:10
15、.
【解析】
根据题意,画出树状图,然后根据树状图和概率公式求概率即可.
【详解】
解:画树状图得:
共有9种等可能的结果,至少有一辆汽车向左转的有5种情况,
至少有一辆汽车向左转的概率是:.
故答案为:.
【点睛】
此题考查的是求概率问题,掌握树状图的画法和概率公式是解决此题的关键.
16、
【解析】
作辅助线,首先求出∠DAC的大小,进而求出旋转的角度,即可得出答案.
【详解】
如图,分别连接OA、OB、OD;
∵OA=OB= ,AB=2,
∴△OAB是等腰直角三角形,
∴∠OAB=45°;
同理可证:∠OAD=45°,
∴∠DAB=90°;
∵∠CAB=60°,
∴∠DAC=90°−60°=30°,
∴旋转角的正切值是,
故答案为:.
【点睛】
此题考查等边三角形的性质,旋转的性质,点与圆的位置关系,解直角三角形,解题关键在于作辅助线.
17、
【解析】
根据正弦和余弦的概念求解.
【详解】
解:∵P是∠α的边OA上一点,且P点坐标为(3,4),
∴PB=4,OB=3,OP= =5,
故sinα= = , cosα= ,
∴sinα+cosα=,
故答案为
【点睛】
此题考查的是锐角三角函数的定义,解答此类题目的关键是找出所求角的对应边.
三、解答题(共7小题,满分69分)
18、见解析.
【解析】
(1)画出⊙O的两条直径,交点即为圆心O.
(2)作直线AO交⊙O于F,直线BF即为所求.
【详解】
解:作图如下:
(1);
(2).
【点睛】
本题考查作图−复杂作图,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
19、(1)y=x2+2x﹣3;(2)点P的坐标为(2,21)或(﹣2,5);(3).
【解析】
(1)先根据点A坐标及对称轴得出点B坐标,再利用待定系数法求解可得;
(2)利用(1)得到的解析式,可设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.然后依据S△POC=2S△BOC列出关于a的方程,从而可求得a的值,于是可求得点P的坐标;
(3)先求得直线AC的解析式,设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3),然后可得到QD与x的函数的关系,最后利用配方法求得QD的最大值即可.
【详解】
解:(1)∵抛物线与x轴的交点A(﹣3,0),对称轴为直线x=﹣1,
∴抛物线与x轴的交点B的坐标为(1,0),
设抛物线解析式为y=a(x+3)(x﹣1),
将点C(0,﹣3)代入,得:﹣3a=﹣3,
解得a=1,
则抛物线解析式为y=(x+3)(x﹣1)=x2+2x﹣3;
(2)设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.
∵S△POC=2S△BOC,
∴•OC•|a|=2×OC•OB,即×3×|a|=2××3×1,解得a=±2.
当a=2时,点P的坐标为(2,21);
当a=﹣2时,点P的坐标为(﹣2,5).
∴点P的坐标为(2,21)或(﹣2,5).
(3)如图所示:
设AC的解析式为y=kx﹣3,将点A的坐标代入得:﹣3k﹣3=0,解得k=﹣1,
∴直线AC的解析式为y=﹣x﹣3.
设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3).
∴QD=﹣x﹣3﹣( x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x=﹣(x2+3x+﹣)=﹣(x+)2+,
∴当x=﹣时,QD有最大值,QD的最大值为.
【点睛】
本题主要考查了二次函数综合题,解题的关键是熟练掌握二次函数的性质和应用.
20、(1)直线的表达式为,双曲线的表达方式为;(2)点P的坐标为或
【解析】
分析:(1)将点B(-1,4)代入直线和双曲线解析式求出k和m的值即可;
(2)根据直线解析式求得点A坐标,由S△ACP=AC•|yP|=4求得点P的纵坐标,继而可得答案.
详解:(1)∵直线与双曲线 ()都经过点B(-1,4),
,
,
∴直线的表达式为,双曲线的表达方式为.
(2)由题意,得点C的坐标为C(-1,0),直线与x轴交于点A(3,0),
,
∵,
,
点P在双曲线上,
∴点P的坐标为或.
点睛:本题主要考查反比例函数和一次函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积是解题的关键.
21、
【解析】
分析:化简绝对值、0次幂和负指数幂,代入30°角的三角函数值,然后按照有理数的运算顺序和法则进行计算即可.
详解:原式=+1﹣2×+=.
点睛:本题考查了实数的运算,用到的知识点主要有绝对值、零指数幂和负指数幂,以及特殊角的三角函数值,熟记相关法则和性质是解决此题的关键.
22、(1)详见解析;(2)
【解析】
(1)根据题意平分可得,从而证明即可解答
(2)由(1)可知,再根据四边形是平行四边形可得,过点作延长线于点,再根据勾股定理即可解答
【详解】
(1)证明:平分
又
又
(2)
四边形是平行四边形
,
为等边三角形
过点作延长线于点.
在中,
【点睛】
此题考查三角形全等的判定与性质,勾股定理,平行四边形的性质,解题关键在于作好辅助线
23、不满足安全要求,理由见解析.
【解析】
在Rt△ABC中,由∠ACB=90°,AC=15m,∠ABC=45°可求得BC=15m;在Rt△EGD中,由∠EGD=90°,EG=15m,∠EFG=37°,可解得GF=20m;通过已知条件可证得四边形EACG是矩形,从而可得GC=AE=2m;这样可解得:DF=GC+BC+BD-GF=2+15+5-20=2<2.5,由此可知:“设计方案不满足安全要求”.
【详解】
解:施工方提供的设计方案不满足安全要求,理由如下:
在Rt△ABC中,AC=15m,∠ABC=45°,
∴BC==15m.
在Rt△EFG中,EG=15m,∠EFG=37°,
∴GF=≈=20m.
∵EG=AC=15m,AC⊥BC,EG⊥BC,
∴EG∥AC,
∴四边形EGCA是矩形,
∴GC=EA=2m,
∴DF=GC+BC+BD-GF=2+15+5-20=2<2.5.
∴施工方提供的设计方案不满足安全要求.
24、(1)证明见解析;(2)1.
【解析】
(1)由同圆半径相等和对顶角相等得∠OBP=∠APC,由圆的切线性质和垂直得∠ABP+∠OBP=90°和∠ACB+∠APC=90°,则∠ABP=∠ACB,根据等角对等边得AB=AC;
(2)设⊙O的半径为r,分别在Rt△AOB和Rt△ACP中根据勾股定理列等式,并根据AB=AC得52﹣r2=(2)2﹣(5﹣r)2,求出r的值即可.
【详解】
解:(1)连接OB,∵OB=OP,∴∠OPB=∠OBP,∵∠OPB=∠APC,
∴∠OBP=∠APC,∵AB与⊙O相切于点B,∴OB⊥AB,∴∠ABO=90°,
∴∠ABP+∠OBP=90°,∵OA⊥AC,∴∠OAC=90°,∴∠ACB+∠APC=90°,∴∠ABP=∠ACB,
∴AB=AC;
(2)设⊙O的半径为r,在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2,
在Rt△ACP中,AC2=PC2﹣PA2,AC2=(2)2﹣(5﹣r)2,
∵AB=AC,∴52﹣r2=(2)2﹣(5﹣r)2,解得:r=1,
则⊙O的半径为1.
【点睛】
本题考查了圆的切线的性质,圆的切线垂直于经过切点的半径;并利用勾股定理列等式,求圆的半径;此类题的一般做法是:若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系;简记作:见切点,连半径,见垂直.
2023年广东省佛山市南海区华光中学中考数学模拟试卷(含解析): 这是一份2023年广东省佛山市南海区华光中学中考数学模拟试卷(含解析),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2021-2022学年广东省深圳中学中考数学模拟精编试卷含解析: 这是一份2021-2022学年广东省深圳中学中考数学模拟精编试卷含解析,共22页。试卷主要包含了下列运算正确的是,计算3的结果是,的倒数是等内容,欢迎下载使用。
2021-2022学年广东省广州越秀区四校联考中考数学模拟精编试卷含解析: 这是一份2021-2022学年广东省广州越秀区四校联考中考数学模拟精编试卷含解析,共20页。试卷主要包含了点P等内容,欢迎下载使用。