广东省广州市黄埔区2022年中考数学对点突破模拟试卷含解析
展开
这是一份广东省广州市黄埔区2022年中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,运用图形变化的方法研究下列问题,的值为等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.2017年我国大学生毕业人数将达到7490000人,这个数据用科学记数法表示为( )
A.7.49×107 B.74.9×106 C.7.49×106 D.0.749×107
2.已知一组数据,,,,的平均数是2,方差是,那么另一组数据,,,,,的平均数和方差分别是 .
A. B. C. D.
3.已知a﹣b=1,则a3﹣a2b+b2﹣2ab的值为( )
A.﹣2 B.﹣1 C.1 D.2
4.明明和亮亮都在同一直道A、B两地间做匀速往返走锻炼明明的速度小于亮亮的速度忽略掉头等时间明明从A地出发,同时亮亮从B地出发图中的折线段表示从开始到第二次相遇止,两人之间的距离米与行走时间分的函数关系的图象,则
A.明明的速度是80米分 B.第二次相遇时距离B地800米
C.出发25分时两人第一次相遇 D.出发35分时两人相距2000米
5.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是( )
A. B. C. D.
6.的值为( )
A. B.- C.9 D.-9
7.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是( )
A. B.
C. D.
8.某种计算器标价240元,若以8折优惠销售,仍可获利20%,那么这种计算器的进价为( )
A.152元 B.156元 C.160元 D.190元
9.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′,连接CC′.若∠CC′B′=32°,则∠B的大小是( )
A.32° B.64° C.77° D.87°
10.用配方法解下列方程时,配方有错误的是( )
A.化为 B.化为
C.化为 D.化为
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为_____.
12.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___岁.
13.如图,在平面直角坐标系xOy中,直线l:y=x-与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,按此规律进行下去,则点A3的横坐标为______;点A2018的横坐标为______.
14.如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:SⅢ=________.
15.函数中,自变量的取值范围是______.
16.分解因式2x2+4x+2=__________.
三、解答题(共8题,共72分)
17.(8分)已知BD平分∠ABF,且交AE于点D.
(1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);
(2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD时,求证:四边形ABCD是菱形.
18.(8分)如图1,已知直线y=kx与抛物线y=交于点A(3,6).
(1)求直线y=kx的解析式和线段OA的长度;
(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;
(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?
19.(8分)已知:如图,点A,F,C,D在同一直线上,AF=DC,AB∥DE,AB=DE,连接BC,BF,CE.求证:四边形BCEF是平行四边形.
20.(8分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为.求袋子中白球的个数;(请通过列式或列方程解答)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)
21.(8分)某街道需要铺设管线的总长为9000,计划由甲队施工,每天完成150.工作一段时间后,因为天气原因,想要40天完工,所以增加了乙队.如图表示剩余管线的长度与甲队工作时间(天)之间的函数关系图象.
(1)直接写出点的坐标;
(2)求线段所对应的函数解析式,并写出自变量的取值范围;
(3)直接写出乙队工作25天后剩余管线的长度.
22.(10分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,交AB于点D,且AD=1.设点A的坐标为(4,4)则点C的坐标为 ;若点D的坐标为(4,n).
①求反比例函数y=的表达式;
②求经过C,D两点的直线所对应的函数解析式;在(2)的条件下,设点E是线段CD上的动点(不与点C,D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.
23.(12分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.求证:AB=AF;若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.
24.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.该项绿化工程原计划每天完成多少米2?该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
7490000=7.49×106.
故选C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2、D
【解析】
根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可.
【详解】
解:∵数据x1,x2,x3,x4,x5的平均数是2,
∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是3×2-2=4;
∵数据x1,x2,x3,x4,x5的方差为,
∴数据3x1,3x2,3x3,3x4,3x5的方差是×32=3,
∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,
故选D.
【点睛】
本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.
3、C
【解析】
先将前两项提公因式,然后把a﹣b=1代入,化简后再与后两项结合进行分解因式,最后再代入计算.
【详解】
a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.
故选C.
【点睛】
本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.
4、B
【解析】
C、由二者第二次相遇的时间结合两次相遇分别走过的路程,即可得出第一次相遇的时间,进而得出C选项错误;
A、当时,出现拐点,显然此时亮亮到达A地,利用速度路程时间可求出亮亮的速度及两人的速度和,二者做差后可得出明明的速度,进而得出A选项错误;
B、根据第二次相遇时距离B地的距离明明的速度第二次相遇的时间、B两地间的距离,即可求出第二次相遇时距离B地800米,B选项正确;
D、观察函数图象,可知:出发35分钟时亮亮到达A地,根据出发35分钟时两人间的距离明明的速度出发时间,即可求出出发35分钟时两人间的距离为2100米,D选项错误.
【详解】
解:第一次相遇两人共走了2800米,第二次相遇两人共走了米,且二者速度不变,
,
出发20分时两人第一次相遇,C选项错误;
亮亮的速度为米分,
两人的速度和为米分,
明明的速度为米分,A选项错误;
第二次相遇时距离B地距离为米,B选项正确;
出发35分钟时两人间的距离为米,D选项错误.
故选:B.
【点睛】
本题考查了一次函数的应用,观察函数图象,逐一分析四个选项的正误是解题的关键.
5、A
【解析】
【分析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明S△OCD=S△ACD,S△OEF=S△AEF,则S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆,即可求解.
【详解】作直径CG,连接OD、OE、OF、DG.
∵CG是圆的直径,
∴∠CDG=90°,则DG==8,
又∵EF=8,
∴DG=EF,
∴,
∴S扇形ODG=S扇形OEF,
∵AB∥CD∥EF,
∴S△OCD=S△ACD,S△OEF=S△AEF,
∴S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=π×52=,
故选A.
【点睛】本题考查扇形面积的计算,圆周角定理.本题中找出两个阴影部分面积之间的联系是解题的关键.
6、A
【解析】
【分析】根据绝对值的意义进行求解即可得.
【详解】表示的是的绝对值,
数轴上表示的点到原点的距离是,即的绝对值是,
所以的值为 ,
故选A.
【点睛】本题考查了绝对值的意义,熟练掌握绝对值的意义是解题的关键.
7、D
【解析】
试题解析:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得
.
故选D.
考点:由实际问题抽象出二元一次方程组
8、C
【解析】
【分析】设进价为x元,依题意得240×0.8-x=20x℅,解方程可得.
【详解】设进价为x元,依题意得
240×0.8-x=20x℅
解得x=160
所以,进价为160元.
故选C
【点睛】本题考核知识点:列方程解应用题. 解题关键点:找出相等关系.
9、C
【解析】
试题分析:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.
考点:旋转的性质.
10、B
【解析】
配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
【详解】
解:、,,,,故选项正确.
、,,,,故选项错误.
、,,,,,故选项正确.
、,,,,.故选项正确.
故选:.
【点睛】
此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、4
【解析】
根据锐角的余弦值等于邻边比对边列式求解即可.
【详解】
∵∠C=90°,AB=6,
∴,
∴BC=4.
【点睛】
本题考查了勾股定理和锐角三角函数的概念,熟练掌握锐角三角函数的定义是解答本题的关键.在Rt△ABC中, , ,.
12、1.
【解析】
根据中位数的定义找出第20和21个数的平均数,即可得出答案.
【详解】
解:∵该班有40名同学,
∴这个班同学年龄的中位数是第20和21个数的平均数.
∵14岁的有1人,1岁的有21人,
∴这个班同学年龄的中位数是1岁.
【点睛】
此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),熟练掌握中位数的定义是本题的关键.
13、
【解析】
利用一次函数图象上点的坐标特征可求出点B1的坐标,根据等边三角形的性质可求出点A1的坐标,同理可得出点B2、A2、A3的坐标,根据点An坐标的变化即可得出结论.
【详解】
当y=0时,有x-=0,
解得:x=1,
∴点B1的坐标为(1,0),
∵A1OB1为等边三角形,
∴点A1的坐标为(,).
当y=时.有x-=,
解得:x=,
∴点B2的坐标为(,),
∵A2A1B2为等边三角形,
∴点A2的坐标为(,).
同理,可求出点A3的坐标为(,),点A2018的坐标为(,).
故答案为;.
【点睛】
本题考查了一次函数图象上点的坐标特征、等边三角形的性质以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合等边三角形的性质找出点An横坐标的变化是解题的关键.
14、1:3:5
【解析】
∵DE∥FG∥BC,
∴△ADE∽△AFG∽△ABC,
∵AD=DF=FB,
∴AD:AF:AB=1:2:3,
∴ =1:4:9,
∴SⅠ:SⅡ:SⅢ=1:3:5.
故答案为1:3:5.
点睛: 本题考查了平行线的性质及相似三角形的性质.相似三角形的面积比等于相似比的平方.
15、
【解析】
根据分式有意义的条件是分母不为2;分析原函数式可得关系式x−1≠2,解得答案.
【详解】
根据题意得x−1≠2,
解得:x≠1;
故答案为:x≠1.
【点睛】
本题主要考查自变量得取值范围的知识点,当函数表达式是分式时,考虑分式的分母不能为2.
16、2(x+1)2。
【解析】
试题解析:原式=2(x2+2x+1)=2(x+1)2.
考点:提公因式法与公式法的综合运用.
三、解答题(共8题,共72分)
17、 (1)见解析:(2)见解析.
【解析】
试题分析:(1)根据角平分线的作法作出∠BAE的平分线AP即可;
(2)先证明△ABO≌△CBO,得到AO=CO,AB=CB,再证明△ABO≌△ADO,得到BO=DO.由对角线互相平分的四边形是平行四边形及有一组邻边相等的平行四边形是菱形即可证明四边形ABCD是菱形.
试题解析:(1)如图所示:
(2)如图:
在△ABO和△CBO中,∵∠ABO=∠CBO,OB=OB,∠ AOB=∠COB=90°,∴△ABO≌△CBO(ASA),∴AO=CO,AB=CB.在△ABO和△ADO中,∵∠OAB=∠OAD,OA=OA,∠AOB=∠AOD=90°,∴△ABO≌△ADO(ASA),∴BO=DO.∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵AB=CB,∴平行四边形ABCD是菱形.
考点:1.菱形的判定;2.作图—基本作图.
18、(1)y=2x,OA=,
(2)是一个定值,,
(3)当时,E点只有1个,当时,E点有2个。
【解析】(1)把点A(3,6)代入y=kx 得;
∵6=3k,
∴k=2,
∴y=2x.
OA=.
(2)是一个定值,理由如下:
如答图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H.
①当QH与QM重合时,显然QG与QN重合,
此时;
②当QH与QM不重合时,
∵QN⊥QM,QG⊥QH
不妨设点H,G分别在x、y轴的正半轴上,
∴∠MQH=∠GQN,
又∵∠QHM=∠QGN=90°
∴△QHM∽△QGN…(5分),
∴,
当点P、Q在抛物线和直线上不同位置时,同理可得.①①
如答图2,延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R
∵∠AOD=∠BAE,
∴AF=OF,
∴OC=AC=OA=
∵∠ARO=∠FCO=90°,∠AOR=∠FOC,
∴△AOR∽△FOC,
∴,
∴OF=,
∴点F(,0),
设点B(x,),
过点B作BK⊥AR于点K,则△AKB∽△ARF,
∴,
即,
解得x1=6,x2=3(舍去),
∴点B(6,2),
∴BK=6﹣3=3,AK=6﹣2=4,
∴AB=5
(求AB也可采用下面的方法)
设直线AF为y=kx+b(k≠0)把点A(3,6),点F(,0)代入得
k=,b=10,
∴,
∴,
∴(舍去),,
∴B(6,2),
∴AB=5
在△ABE与△OED中
∵∠BAE=∠BED,
∴∠ABE+∠AEB=∠DEO+∠AEB,
∴∠ABE=∠DEO,
∵∠BAE=∠EOD,
∴△ABE∽△OED.
设OE=x,则AE=﹣x (),
由△ABE∽△OED得,
∴
∴()
∴顶点为(,)
如答图3,
当时,OE=x=,此时E点有1个;
当时,任取一个m的值都对应着两个x值,此时E点有2个.
∴当时,E点只有1个
当时,E点有2个
19、证明见解析
【解析】
首先证明△ABC≌△DEF(ASA),进而得出BC=EF,BC∥EF,进而得出答案.
【详解】
∵AB∥DE,
∴∠A=∠D,
∵AF=CD,
∴AC=DF,
在△ABC和△DEF中,
,
∴△ABC≌△DEF,
∴BC=EF,∠ACB=∠DFE,
∴BC∥EF,
∴四边形BCEF是平行四边形.
【点睛】
本题考查了全等三角形的判定与性质与平行四边形的判定,解题的关键是熟练的掌握全等三角形的判定与性质与平行四边形的判定.
20、(1)袋子中白球有2个;(2)见解析, .
【解析】
(1)首先设袋子中白球有x个,利用概率公式求即可得方程:,解此方程即可求得答案;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.
【详解】
解:(1)设袋子中白球有x个,
根据题意得:,
解得:x=2,
经检验,x=2是原分式方程的解,
∴袋子中白球有2个;
(2)画树状图得:
∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,
∴两次都摸到相同颜色的小球的概率为:.
【点睛】
此题考查了列表法或树状图法求概率.注意掌握方程思想的应用.注意概率=所求情况数与总情况数之比.
21、(1)(10,7500)(2)直线BC的解析式为y=-250x+10000,自变量x的取值范围为10≤x≤40.(3)1250米.
【解析】
(1)由于前面10天由甲单独完成,用总的长度减去已完成的长度即为剩余的长度,从而求出点B的坐标;(2)利用待定系数法求解即可;(3)已队工作25天后,即甲队工作了35天,故当x=35时,函数值即为所求.
【详解】
(1)9000-150×10=7500.
∴点B的坐标为(10,7500)
(2)设直线BC的解析式为y=kx+b,依题意,得:
解得:
∴直线BC的解析式为y=-250x+10000,
∵乙队是10天之后加入,40天完成,
∴自变量x的取值范围为10≤x≤40.
(3)依题意,当x=35时,y=-250×35+10000=1250.
∴乙队工作25天后剩余管线的长度是1250米.
【点睛】
本题考查了一次函数的应用,理解题意观察图象得到有用信息是解题的关键.
22、 (1)C(2,2);(2)①反比例函数解析式为y=;②直线CD的解析式为y=﹣x+1;(1)m=1时,S△OEF最大,最大值为.
【解析】
(1)利用中点坐标公式即可得出结论;
(2)①先确定出点A坐标,进而得出点C坐标,将点C,D坐标代入反比例函数中即可得出结论;
②由n=1,求出点C,D坐标,利用待定系数法即可得出结论;
(1)设出点E坐标,进而表示出点F坐标,即可建立面积与m的函数关系式即可得出结论.
【详解】
(1)∵点C是OA的中点,A(4,4),O(0,0),
∴C,
∴C(2,2);
故答案为(2,2);
(2)①∵AD=1,D(4,n),
∴A(4,n+1),
∵点C是OA的中点,
∴C(2,),
∵点C,D(4,n)在双曲线上,
∴,
∴,
∴反比例函数解析式为;
②由①知,n=1,
∴C(2,2),D(4,1),
设直线CD的解析式为y=ax+b,
∴,
∴,
∴直线CD的解析式为y=﹣x+1;
(1)如图,由(2)知,直线CD的解析式为y=﹣x+1,
设点E(m,﹣m+1),
由(2)知,C(2,2),D(4,1),
∴2<m<4,
∵EF∥y轴交双曲线于F,
∴F(m,),
∴EF=﹣m+1﹣,
∴S△OEF=(﹣m+1﹣)×m=(﹣m2+1m﹣4)=﹣(m﹣1)2+,
∵2<m<4,
∴m=1时,S△OEF最大,最大值为
【点睛】
此题是反比例函数综合题,主要考查了待定系数法,线段的中点坐标公式,解本题的关键是建立S△OEF与m的函数关系式.
23、(1)证明见解析;(2)结论:四边形ACDF是矩形.理由见解析.
【解析】
(1)只要证明AB=CD,AF=CD即可解决问题;
(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴BE∥CD,AB=CD,
∴∠AFC=∠DCG,
∵GA=GD,∠AGF=∠CGD,
∴△AGF≌△DGC,
∴AF=CD,
∴AB=CF.
(2)解:结论:四边形ACDF是矩形.
理由:∵AF=CD,AF∥CD,
∴四边形ACDF是平行四边形,
∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD=120°,
∴∠FAG=60°,
∵AB=AG=AF,
∴△AFG是等边三角形,
∴AG=GF,
∵△AGF≌△DGC,
∴FG=CG,∵AG=GD,
∴AD=CF,
∴四边形ACDF是矩形.
【点睛】
本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
24、 (1)2000;(2)2米
【解析】
(1)设未知数,根据题目中的的量关系列出方程;
(2)可以通过平移,也可以通过面积法,列出方程
【详解】
解:(1)设该项绿化工程原计划每天完成x米2,
根据题意得:﹣= 4
解得:x=2000,
经检验,x=2000是原方程的解;
答:该绿化项目原计划每天完成2000平方米;
(2)设人行道的宽度为x米,根据题意得,
(20﹣3x)(8﹣2x)=56
解得:x=2或x=(不合题意,舍去).
答:人行道的宽为2米.
相关试卷
这是一份2024年广东省广州市黄埔区中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2024年广东省广州市黄埔区中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2023年广东省广州市黄埔区中考数学一模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。