广东省惠州惠阳区六校联考2021-2022学年中考数学五模试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列图案是轴对称图形的是( )
A. B. C. D.
2.已知△ABC,D是AC上一点,尺规在AB上确定一点E,使△ADE∽△ABC,则符合要求的作图痕迹是( )
A. B.
C. D.
3.下列图案中,既是中心对称图形,又是轴对称图形的是( )
A. B. C. D.
4.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是( )
A.20cm2 B.20πcm2 C.10πcm2 D.5πcm2
5.如图是一个由5个相同的正方体组成的立体图形,它的三视图是( )
A. B.
C. D.
6.从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为( )
A.① B.② C.③ D.④
7.如图,圆弧形拱桥的跨径米,拱高米,则拱桥的半径为( )米
A. B. C. D.
8.下列调查中,调查方式选择合理的是( )
A.为了解襄阳市初中每天锻炼所用时间,选择全面调查
B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查
C.为了解神舟飞船设备零件的质量情况,选择抽样调查
D.为了解一批节能灯的使用寿命,选择抽样调查
9.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为( )
A.0.5×10﹣9米 B.5×10﹣8米 C.5×10﹣9米 D.5×10﹣10米
10.如图,直立于地面上的电线杆 AB,在阳光下落在水平地面和坡面上的影子分别是
BC、CD,测得 BC=6 米,CD=4 米,∠BCD=150°,在 D 处测得电线杆顶端 A 的仰 角为 30°,则电线杆 AB 的高度为( )
A. B. C. D.
11.某校今年共毕业生297人,其中女生人数为男生人数的65%,则该校今年的女毕业生有()
A.180人 B.117人 C.215人 D.257人
12.如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为( )
A.20 B.16 C.12 D.8
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根,则m的取值范围是_____.
14.已知关于x的方程有两个不相等的实数根,则m的取值范围是______.
15.9的算术平方根是 .
16.若x2+kx+81是完全平方式,则k的值应是________.
17.二次根式中,x的取值范围是 .
18.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=1DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=1.其中正确结论的是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)先化简,再选择一个你喜欢的数(要合适哦!)代入求值:.
20.(6分)如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.
(1)求∠DOA的度数;
(2)求证:直线ED与⊙O相切.
21.(6分)计算:|﹣1|+﹣(1﹣)0﹣()﹣1.
22.(8分)抛物线y=﹣x2+bx+c(b,c均是常数)经过点O(0,0),A(4,4),与x轴的另一交点为点B,且抛物线对称轴与线段OA交于点P.
(1)求该抛物线的解析式和顶点坐标;
(2)过点P作x轴的平行线l,若点Q是直线上的动点,连接QB.
①若点O关于直线QB的对称点为点C,当点C恰好在直线l上时,求点Q的坐标;
②若点O关于直线QB的对称点为点D,当线段AD的长最短时,求点Q的坐标(直接写出答案即可).
23.(8分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.
24.(10分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为6,BC=8,求弦BD的长.
25.(10分)()如图①已知四边形中,,BC=b,,求:
①对角线长度的最大值;
②四边形的最大面积;(用含,的代数式表示)
()如图②,四边形是某市规划用地的示意图,经测量得到如下数据:,,,,请你利用所学知识探索它的最大面积(结果保留根号)
26.(12分)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.
求证:AE∥CF.
27.(12分)为纪念红军长征胜利81周年,我市某中学团委拟组织学生开展唱红歌比赛活动,为此,该校随即抽取部分学生就“你是否喜欢红歌”进行问卷调查,并将调查结果统计后绘制成如下统计表和扇形统计图.
态度
非常喜欢
喜欢
一般
不知道
频数
90
b
30
10
频率
a
0.35
0.20
请你根据统计图、表,提供的信息解答下列问题:
(1)该校这次随即抽取了 名学生参加问卷调查:
(2)确定统计表中a、b的值:a= ,b= ;
(3)该校共有2000名学生,估计全校态度为“非常喜欢”的学生人数.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
解:A.此图形不是轴对称图形,不合题意;
B.此图形不是轴对称图形,不合题意;
C.此图形是轴对称图形,符合题意;
D.此图形不是轴对称图形,不合题意.
故选C.
2、A
【解析】
以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AB的交点即为所求作的点.
【详解】
如图,点E即为所求作的点.故选:A.
【点睛】
本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作一角等于∠B或∠C,并熟练掌握做一个角等于已知角的作法式解题的关键.
3、B
【解析】
根据轴对称图形与中心对称图形的概念解答.
【详解】
A.不是轴对称图形,是中心对称图形;
B.是轴对称图形,是中心对称图形;
C.不是轴对称图形,也不是中心对称图形;
D.是轴对称图形,不是中心对称图形.
故选B.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
4、C
【解析】
圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π.
故答案为C
5、D
【解析】
找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中.
【详解】
解:此几何体的主视图有两排,从上往下分别有1,3个正方形;
左视图有二列,从左往右分别有2,1个正方形;
俯视图有三列,从上往下分别有3,1个正方形,
故选A.
【点睛】
本题考查了三视图的知识,关键是掌握三视图所看的位置.掌握定义是关键.
此题主要考查了简单组合体的三视图,准确把握观察角度是解题关键.
6、C
【解析】
根据正方形的判定定理即可得到结论.
【详解】
与左边图形拼成一个正方形,
正确的选择为③,
故选C.
【点睛】
本题考查了正方形的判定,是一道几何结论开放题,认真观察,熟练掌握和应用正方形的判定方法是解题的关键.
7、A
【解析】
试题分析:根据垂径定理的推论,知此圆的圆心在CD所在的直线上,设圆心是O.连接OA.根据垂径定理和勾股定理求解.得AD=6设圆的半径是r, 根据勾股定理, 得r2=36+(r﹣4)2,解得r=6.5
考点:垂径定理的应用.
8、D
【解析】
A.为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;
B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;
C.为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;
D.为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;
故选D.
9、D
【解析】
解:0.5纳米=0.5×0.000 000 001米=0.000 000 000 5米=5×10﹣10米.
故选D.
点睛:在负指数科学计数法 中,其中 ,n等于第一个非0数字前所有0的个数(包括下数点前面的0).
10、B
【解析】
延长AD交BC的延长线于E,作DF⊥BE于F,
∵∠BCD=150°,
∴∠DCF=30°,又CD=4,
∴DF=2,CF= =2,
由题意得∠E=30°,
∴EF= ,
∴BE=BC+CF+EF=6+4,
∴AB=BE×tanE=(6+4)×=(2+4)米,
即电线杆的高度为(2+4)米.
点睛:本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.
11、B
【解析】
设男生为x人,则女生有65%x人,根据今年共毕业生297人列方程求解即可.
【详解】
设男生为x人,则女生有65%x人,由题意得,
x+65%x=297,
解之得
x=180,
297-180=117人.
故选B.
【点睛】
本题考查了一元一次方程的应用,根据题意找出等量关系列出方程是解答本题的关键.
12、B
【解析】
首先证明:OE=BC,由AE+EO=4,推出AB+BC=8即可解决问题;
【详解】
∵四边形ABCD是平行四边形,
∴OA=OC,
∵AE=EB,
∴OE=BC,
∵AE+EO=4,
∴2AE+2EO=8,
∴AB+BC=8,
∴平行四边形ABCD的周长=2×8=16,
故选:B.
【点睛】
本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握
三角形的中位线定理,属于中考常考题型.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、m≤1
【解析】
根据一元二次方程有实数根,得出△≥0,建立关于m的不等式,求出m的取值范围即可.
【详解】
解:由题意知,△=4﹣4(m﹣1)≥0,
∴m≤1,
故答案为:m≤1.
【点睛】
此题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0,方程有两个不相等的实数根;△=0,方程有两个相等的实数根;△<0,方程没有实数根是本题的关键.
14、
【解析】
试题分析:若一元二次方程有两个不相等的实数根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,解不等式即可求出m的取值范围. ∵关于x的方程x2﹣6x+m=0有两个不相等的实数根,
∴△=b2﹣4ac=(﹣6)2﹣4m=36﹣4m>0, 解得:m<1.
考点:根的判别式.
15、1.
【解析】
根据一个正数的算术平方根就是其正的平方根即可得出.
【详解】
∵,
∴9算术平方根为1.
故答案为1.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.
16、±1
【解析】
试题分析:利用完全平方公式的结构特征判断即可确定出k的值.
解:∵x2+kx+81是完全平方式,
∴k=±1.
故答案为±1.
考点:完全平方式.
17、.
【解析】
根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
18、①②③
【解析】
根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面积比较即可.
【详解】
①正确.
理由:
∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,
∴Rt△ABG≌Rt△AFG(HL);
②正确.
理由:
EF=DE=CD=2,设BG=FG=x,则CG=6-x.
在直角△ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,
解得x=1.
∴BG=1=6-1=GC;
③正确.
理由:
∵CG=BG,BG=GF,
∴CG=GF,
∴△FGC是等腰三角形,∠GFC=∠GCF.
又∵Rt△ABG≌Rt△AFG;
∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°-∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,
∴∠AGB=∠AGF=∠GFC=∠GCF,
∴AG∥CF;
④错误.
理由:
∵S△GCE=GC•CE=×1×4=6
∵GF=1,EF=2,△GFC和△FCE等高,
∴S△GFC:S△FCE=1:2,
∴S△GFC=×6=≠1.
故④不正确.
∴正确的个数有1个: ①②③.
故答案为①②③
【点睛】
本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、1
【解析】解:
取时,原式.
20、(1)∠DOA =100°;(2)证明见解析.
【解析】
试题分析:(1)根据∠CBA=50°,利用圆周角定理即可求得∠DOA的度数;(2)连接OE,利用SSS证明△EAO≌△EDO,根据全等三角形的性质可得∠EDO=∠EAO=90°,即可证明直线ED与⊙O相切.
试题解析:(1)∵∠DBA=50°,∴∠DOA=2∠DBA=100°;
(2)证明:连接OE,
在△EAO和△EDO中,
AO=DO,EA=ED,EO=EO,
∴△EAO≌△EDO,
得到∠EDO=∠EAO=90°,
∴直线ED与⊙O相切.
考点:圆周角定理;全等三角形的判定及性质;切线的判定定理
21、1
【解析】
试题分析:先分别计算绝对值,算术平方根,零指数幂和负指数幂,然后相加即可.
试题解析:
解:|﹣1|+﹣(1﹣)0﹣()﹣1
=1+3﹣1﹣2
=1.
点睛:本题考查了实数的计算,熟悉计算的顺序和相关的法则是解决此题的关键.
22、(1)y=﹣(x﹣)2+;(,);(2)①(﹣,)或(,);②(0,);
【解析】
1)把0(0,0),A(4,4v3)的坐标代入
y=﹣x2+bx+c,转化为解方程组即可.
(2)先求出直线OA的解析式,点B坐标,抛物线的对称轴即可解决问题.
(3)①如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,首先证明四边形BOQC是菱形,设Q(m,),根据OQ=OB=5,可得方程,解方程即可解决问题.
②如图2中,由题意点D在以B为圆心5为半径的OB上运动,当A,D、B共线时,线段AD最小,设OD与BQ交于点H.先求出D、H两点坐标,再求出直线BH的解析式即可解决问题.
【详解】
(1)把O(0,0),A(4,4)的坐标代入y=﹣x2+bx+c,
得,
解得,
∴抛物线的解析式为y=﹣x2+5x=﹣(x﹣)2+.
所以抛物线的顶点坐标为(,);
(2)①由题意B(5,0),A(4,4),
∴直线OA的解析式为y=x,AB==7,
∵抛物线的对称轴x=,
∴P(,).
如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,
∵QC∥OB,
∴∠CQB=∠QBO=∠QBC,
∴CQ=BC=OB=5,
∴四边形BOQC是平行四边形,
∵BO=BC,
∴四边形BOQC是菱形,
设Q(m,),
∴OQ=OB=5,
∴m2+()2=52,
∴m=±,
∴点Q坐标为(﹣,)或(,);
②如图2中,由题意点D在以B为圆心5为半径的⊙B上运动,当A、D、B共线时,线段AD最小,设OD与BQ交于点H.
∵AB=7,BD=5,
∴AD=2,D(,),
∵OH=HD,
∴H(,),
∴直线BH的解析式为y=﹣x+,
当y=时,x=0,
∴Q(0,).
【点睛】
本题二次函数与一次函数的关系、几何动态问题、最值问题、作辅助圆解决问题,难度较大,需积极思考,灵活应对.
23、米.
【解析】
先求抛物线对称轴,再根据待定系数法求抛物线解析式,再求函数最大值.
【详解】
由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4,
设抛物线的表达式为:y=ax2+bx+1(a≠0),
则据题意得:,
解得:,
∴羽毛球飞行的路线所在的抛物线的表达式为:y=﹣x2+x+1,
∵y=﹣(x﹣4)2+,
∴飞行的最高高度为:米.
【点睛】
本题考核知识点:二次函数的应用. 解题关键点:熟记二次函数的基本性质.
24、(1)详见解析;(2)BD=9.6.
【解析】
试题分析:(1)连接OB,由垂径定理可得BE=DE,OE⊥BD, ,再由圆周角定理可得 ,从而得到∠ OBE+∠ DBC=90°,即 ,命题得证.
(2)由勾股定理求出OC,再由△OBC的面积求出BE,即可得出弦BD的长.
试题解析:(1)证明:如下图所示,连接OB.
∵ E是弦BD的中点,∴ BE=DE,OE⊥ BD,,
∴∠ BOE=∠ A,∠ OBE+∠ BOE=90°.
∵∠ DBC=∠ A,∴∠ BOE=∠ DBC,
∴∠ OBE+∠ DBC=90°,∴∠ OBC=90°,即BC⊥OB,∴ BC是⊙ O的切线.
(2)解:∵ OB=6,BC=8,BC⊥OB,∴ ,
∵ ,∴ ,
∴.
点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法.
25、(1)①;②;(2)150+475+475.
【解析】
(1)①由条件可知AC为直径,可知BD长度的最大值为AC的长,可求得答案;②连接AC,求得AD2+CD2,利用不等式的性质可求得AD•CD的最大值,从而可求得四边形ABCD面积的最大值;
(2)连接AC,延长CB,过点A做AE⊥CB交CB的延长线于E,可先求得△ABC的面积,结合条件可求得∠D=45°,且A、C、D三点共圆,作AC、CD中垂线,交点即为圆心O,当点D与AC的距离最大时,△ACD的面积最大,AC的中垂线交圆O于点D',交AC于F,FD'即为所求最大值,再求得
△ACD′的面积即可.
【详解】
(1)①因为∠B=∠D=90°,所以四边形ABCD是圆内接四边形,AC为圆的直径,则BD长度的最大值为AC,此时BD=,
②连接AC,则AC2=AB2+BC2=a2+b2=AD2+CD2,S△ACD=AD×CD≤(AD2+CD2)=(a2+b2),所以四边形ABCD的最大面积=(a2+b2)+ab=;
(2)如图,连接AC,延长CB,过点A作AE⊥CB交CB的延长线于E,因为AB=20,∠ABE=180°-∠ABC=60°,所以AE=AB×sin60°=10,EB=AB×cos60°=10,S△ABC=AE×BC=150,因为BC=30,所以EC=EB+BC=40,AC==10,因为∠ABC=120°,∠BAD+∠BCD=195°,所以∠D=45°,则△ACD中,∠D为定角,对边AC为定边,所以,A、C、D点在同一个圆上,做AC、CD中垂线,交点即为圆O,如图,
当点D与AC的距离最大时,△ACD的面积最大,AC的中垂线交圆O于点D’,交AC于F,FD’即为所求最大值,连接OA、OC,∠AOC=2∠AD’C=90°,OA=OC,所以△AOC,△AOF等腰直角三角形,AO=OD’=5,OF=AF==5,D’F=5+5,S△ACD’=AC×D’F=5×(5+5)=475+475,所以Smax=S△ABC+S△ACD=150+475+475.
【点睛】
本题为圆的综合应用,涉及知识点有圆周角定理、不等式的性质、解直角三角形及转化思想等.在(1)中注意直径是最长的弦,在(2)中确定出四边形ABCD面积最大时,D点的位置是解题的关键.本题考查知识点较多,综合性很强,计算量很大,难度适中.
26、证明见解析
【解析】
试题分析:通过全等三角形△ADE≌△CBF的对应角相等证得∠AED=∠CFB,则由平行线的判定证得结论.
证明:∵平行四边形ABCD中,AD=BC,AD∥BC,∴∠ADE=∠CBF.
∵在△ADE与△CBF中,AD=BC,∠ADE=∠CBF, DE=BF,
∴△ADE≌△CBF(SAS).∴∠AED=∠CFB.
∴AE∥CF.
27、(1)200,;(2)a=0.45,b=70;(3)900名.
【解析】
(1)根据“一般”和“不知道”的频数和频率求总数即可(2)根据(1)的总数,结合频数,频率的大小可得到结果(3)根据“非常喜欢”学生的比值就可以计算出2000名学生中的人数.
【详解】
解:(1)“一般”频数30,“不知道”频数10,两者频率0.20,根据频数的计算公式可得,总数=频数/频率=(名);
(2)“非常喜欢”频数90,a= ;
(3).
故答案为(1)200,;(2)a=0.45,b=70;(3)900名.
【点睛】
此题重点考察学生对频数和频率的应用,掌握频率的计算公式是解题的关键.
2024年广东省惠州市惠阳区中考数学一模试卷(含解析): 这是一份2024年广东省惠州市惠阳区中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年广东省惠州市惠阳区中考数学二模试卷(含解析): 这是一份2023年广东省惠州市惠阳区中考数学二模试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年广东省惠州市惠阳区中考数学一模试卷(含解析): 这是一份2023年广东省惠州市惠阳区中考数学一模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。