广东省东莞市中学堂六校2021-2022学年中考数学考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列说法错误的是( )
A.的相反数是2 B.3的倒数是
C. D.,0,4这三个数中最小的数是0
2.若与 互为相反数,则x的值是( )
A.1 B.2 C.3 D.4
3.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是( )
A.①②③ B.①②④ C.①③④ D.①②③④
4.从 ,0,π, ,6这5个数中随机抽取一个数,抽到有理数的概率是( )
A. B. C. D.
5.下列计算正确的是( )
A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2
C.(a+b)2=a2+b2 D.(a﹣b)2=a2﹣2ab+b2
6.研究表明某流感病毒细胞的直径约为0.00000156m,用科学记数法表示这个数是( )
A.0.156×10-5 B.0.156×105 C.1.56×10-6 D.1.56×106
7.如图,直线a,b被直线c所截,若a∥b,∠1=50°,∠3=120°,则∠2的度数为( )
A.80° B.70° C.60° D.50°
8.下列图形中是轴对称图形但不是中心对称图形的是( )
A. B. C. D.
9.如果,那么代数式的值为( )
A.1 B.2 C.3 D.4
10. “可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿用科学记数法可表示为( )
A.0.8×1011 B.8×1010 C.80×109 D.800×108
二、填空题(共7小题,每小题3分,满分21分)
11.某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位,设某个学生原来的座位为(m,n),如果调整后的座位为(i,j),则称该生作了平移[a,b]=[m - i,n - j],并称a+b为该生的位置数.若某生的位置数为10,则当m+n取最小值时,m•n的最大值为_____________.
12.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是________.
13.已知x1,x2是方程x2+6x+3=0的两实数根,则的值为_____.
14.在一个不透明的口袋中,有3个红球、2个黄球、一个白球,它们除颜色不同之外其它完全相同,现从口袋中随机摸出一个球记下颜色后放回,再随机摸出一个球,则两次摸到一个红球和一个黄球的概率是_____.
15.如图,已知直线,直线m、n与a、b、c分别交于点A、C、E和B、D、F,如果,,,那么______.
16.如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为_____.
17.如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,若⊙O的半径是5,CD=8,则AE=______.
三、解答题(共7小题,满分69分)
18.(10分)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如下表:
类型
价格
进价(元/盏)
售价(元/盏)
A型
30
45
B型
50
70
(1)若商场预计进货款为3500元,则这两种台灯各进多少盏.
(2)若设商场购进A型台灯m盏,销售完这批台灯所获利润为P,写出P与m之间的函数关系式.
(3)若商场规定B型灯的进货数量不超过A型灯数量的4倍,那么A型和B型台灯各进多少盏售完之后获得利润最多?此时利润是多少元.
19.(5分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(Ⅰ)图①中的值为 ;
(Ⅱ)求统计的这组数据的平均数、众数和中位数;
(Ⅲ) 根据样本数据,估计这2500只鸡中,质量为的约有多少只?
20.(8分)某初中学校组织200位同学参加义务植树活动.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表1和表2:
表1:甲调查九年级30位同学植树情况
每人植树棵数
7
8
9
10
人数
3
6
15
6
表2:乙调查三个年级各10位同学植树情况
每人植树棵数
6
7
8
9
10
人数
3
6
3
12
6
根据以上材料回答下列问题:
(1)关于于植树棵数,表1中的中位数是 棵;表2中的众数是 棵;
(2)你认为同学 (填“甲”或“乙”)所抽取的样本能更好反映此次植树活动情况;
(3)在问题(2)的基础上估计本次活动200位同学一共植树多少棵?
21.(10分)某学校“智慧方园”数学社团遇到这样一个题目:
如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.
经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).
请回答:∠ADB= °,AB= .请参考以上解决思路,解决问题:
如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.
22.(10分)计算:÷(﹣1)
23.(12分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.
24.(14分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD的长等于21米,在上点D的同侧取点A、B,使∠CAD=30,∠CBD=60.求AB的长(精确到0.1米,参考数据:);已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
试题分析:﹣2的相反数是2,A正确;
3的倒数是,B正确;
(﹣3)﹣(﹣5)=﹣3+5=2,C正确;
﹣11,0,4这三个数中最小的数是﹣11,D错误,
故选D.
考点:1.相反数;2.倒数;3.有理数大小比较;4.有理数的减法.
2、D
【解析】
由题意得+=0,
去分母3x+4(1-x)=0,
解得x=4.故选D.
3、D
【解析】
根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.
【详解】
E点有4中情况,分四种情况讨论如下:
由AB∥CD,可得∠AOC=∠DCE1=β
∵∠AOC=∠BAE1+∠AE1C,
∴∠AE1C=β-α
过点E2作AB的平行线,由AB∥CD,
可得∠1=∠BAE2=α,∠2=∠DCE2=β
∴∠AE2C=α+β
由AB∥CD,可得∠BOE3=∠DCE3=β
∵∠BAE3=∠BOE3+∠AE3C,
∴∠AE3C=α-β
由AB∥CD,可得
∠BAE4+∠AE4C+∠DCE4=360°,
∴∠AE4C=360°-α-β
∴∠AEC的度数可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故选D.
【点睛】
此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论.
4、C
【解析】
根据有理数的定义可找出在从,0,π,,6这5个数中只有0、、6为有理数,再根据概率公式即可求出抽到有理数的概率.
【详解】
∵在,0,π,,6这5个数中有理数只有0、、6这3个数,
∴抽到有理数的概率是,
故选C.
【点睛】
本题考查了概率公式以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键.
5、D
【解析】
A、原式=a2﹣4,不符合题意;
B、原式=a2﹣a﹣2,不符合题意;
C、原式=a2+b2+2ab,不符合题意;
D、原式=a2﹣2ab+b2,符合题意,
故选D
6、C
【解析】
解:,故选C.
7、B
【解析】
直接利用平行线的性质得出∠4的度数,再利用对顶角的性质得出答案.
【详解】
解:
∵a∥b,∠1=50°,
∴∠4=50°,
∵∠3=120°,
∴∠2+∠4=120°,
∴∠2=120°-50°=70°.
故选B.
【点睛】
此题主要考查了平行线的性质,正确得出∠4的度数是解题关键.
8、C
【解析】
分析:根据轴对称图形与中心对称图形的概念求解.
详解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;
B、是轴对称图形,也是中心对称图形,故此选项错误;
C、是轴对称图形,不是中心对称图形,故此选项正确;
D、不是轴对称图形,也不是中心对称图形,故此选项错误.
故选:C.
点睛:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
9、A
【解析】
先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将3x=4y代入即可得.
【详解】
解:∵原式=
=
=
∵3x-4y=0,
∴3x=4y
原式==1
故选:A.
【点睛】
本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.
10、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:将800亿用科学记数法表示为:8×1.
故选:B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
二、填空题(共7小题,每小题3分,满分21分)
11、36
【解析】
10=a+b=(m-i)+(n-j)=(m+n)-(i+j)
所以:m+n=10+i+j
当(m+n)取最小值时,(i+j)也必须最小,所以i和j都是2,这样才能(i+j)才能最小,因此:
m+n=10+2=12
也就是:当m+n=12时,m·n最大是多少?这就容易了:
m·n<=36
所以m·n的最大值就是36
12、
【解析】
解:连接AG,由旋转变换的性质可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,
∴DG=DC﹣CG=1,则AG==,
∵ ,∠ABG=∠CBE,
∴△ABG∽△CBE,
∴,
解得,CE=,
故答案为.
【点睛】
本题考查的是旋转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键.
13、1.
【解析】
试题分析:∵,是方程的两实数根,∴由韦达定理,知,,∴===1,即的值是1.故答案为1.
考点:根与系数的关系.
14、
【解析】
先画树状图展示所有36种等可能的结果数,再找出两次摸到一个红球和一个黄球的结果数,然后根据概率公式求解.
【详解】
画树状图如下:
由树状图可知,共有36种等可能结果,其中两次摸到一个红球和一个黄球的结果数为12,
所以两次摸到一个红球和一个黄球的概率为,
故答案为.
【点睛】
本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.
15、
【解析】
由直线a∥b∥c,根据平行线分线段成比例定理,即可得,又由AC=3,CE=5,DF=4,即可求得BD的长.
【详解】
解:由直线a∥b∥c,根据平行线分线段成比例定理,
即可得,
又由AC=3,CE=5,DF=4
可得:
解得:BD=.
故答案为.
【点睛】
此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.
16、
【解析】
【分析】连接半径和弦AE,根据直径所对的圆周角是直角得:∠AEB=90°,继而可得AE和BE的长,所以图中弓形的面积为扇形OBE的面积与△OBE面积的差,因为OA=OB,所以△OBE的面积是△ABE面积的一半,可得结论.
【详解】如图,连接OE、AE,
∵AB是⊙O的直径,
∴∠AEB=90°,
∵四边形ABCD是平行四边形,
∴AB=CD=4,∠B=∠D=30°,
∴AE=AB=2,BE==2,
∵OA=OB=OE,
∴∠B=∠OEB=30°,
∴∠BOE=120°,
∴S阴影=S扇形OBE﹣S△BOE
=
=,
故答案为.
【点睛】本题考查了扇形的面积计算、平行四边形的性质,含30度角的直角三角形的性质等,求出扇形OBE的面积和△ABE的面积是解本题的关键.
17、2
【解析】
连接OC,由垂径定理知,点E是CD的中点,在直角△OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可
【详解】
设AE为x,
连接OC,
∵AB是⊙O的直径,弦CD⊥AB于点E,CD=8,
∴∠CEO=90°,CE=DE=4,
由勾股定理得:OC2=CE2+OE2,
52=42+(5-x)2,
解得:x=2,
则AE是2,
故答案为:2
【点睛】
此题考查垂径定理和勾股定理,,解题的关键是利用勾股定理求关于半径的方程.
三、解答题(共7小题,满分69分)
18、(1)应购进A型台灯75盏,B型台灯25盏;(2)P=﹣5m+2000;(3)商场购进A型台灯20盏,B型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元.
【解析】
(1)设商场应购进A型台灯x盏,表示出B型台灯为(100-x)盏,然后根据进货款=A型台灯的进货款+B型台灯的进货款列出方程求解即可;
(2)根据题意列出方程即可;
(3)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.
【详解】
解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,
根据题意得,30x+50(100﹣x)=3500,
解得x=75,
所以,100﹣75=25,
答:应购进A型台灯75盏,B型台灯25盏;
(2)设商场销售完这批台灯可获利P元,
则P=(45﹣30)m+(70﹣50)(100﹣m),
=15m+2000﹣20m,
=﹣5m+2000,
即P=﹣5m+2000,
(3)∵B型台灯的进货数量不超过A型台灯数量的4倍,
∴100﹣m≤4m,
∴m≥20,
∵k=﹣5<0,P随m的增大而减小,
∴m=20时,P取得最大值,为﹣5×20+2000=1900(元)
答:商场购进A型台灯20盏,B型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元.
【点睛】
本题考查了一次函数与一元一次方程的应用,解题的关键是熟练的掌握一次函数与一元一次方程的应用.
19、(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)200只.
【解析】
分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;
(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;
(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.
解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;
(Ⅱ)观察条形统计图,
∵,
∴这组数据的平均数是1.52.
∵在这组数据中,1.8出现了16次,出现的次数最多,
∴这组数据的众数为1.8.
∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,
∴这组数据的中位数为1.5.
(Ⅲ)∵在所抽取的样本中,质量为的数量占.
∴由样本数据,估计这2500只鸡中,质量为的数量约占.
有.
∴这2500只鸡中,质量为的约有200只.
点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
20、(1)9,9;(2)乙;(3)1680棵;
【解析】
(1)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(2)根据样本要具有代表性可得乙同学抽取的样本比较有代表性;(3)利用样本估计总体的方法计算即可.
【详解】
(1)表1中30位同学植树情况的中位数是9棵,表2中的众数是9棵;
故答案为:9,9;
(2)乙同学所抽取的样本能更好反映此次植树活动情况;
故答案为:乙;
(3)由题意可得:(3×6+6×7+3×8+12×9+6×10)÷30×200=1680(棵),
答:本次活动200位同学一共植树1680棵.
【点睛】
本题考查了抽样调查,以及中位数,解题的关键是掌握中位数定义及抽样调查抽取的样本要具有代表性.
21、(1)75;4;(2)CD=4.
【解析】
(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB=AD=4,此题得解;
(2)过点B作BE∥AD交AC于点E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.
【详解】
解:(1)∵BD∥AC,
∴∠ADB=∠OAC=75°.
∵∠BOD=∠COA,
∴△BOD∽△COA,
∴.
又∵AO=3,
∴OD=AO=,
∴AD=AO+OD=4.
∵∠BAD=30°,∠ADB=75°,
∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,
∴AB=AD=4.
(2)过点B作BE∥AD交AC于点E,如图所示.
∵AC⊥AD,BE∥AD,
∴∠DAC=∠BEA=90°.
∵∠AOD=∠EOB,
∴△AOD∽△EOB,
∴.
∵BO:OD=1:3,
∴.
∵AO=3,
∴EO=,
∴AE=4.
∵∠ABC=∠ACB=75°,
∴∠BAC=30°,AB=AC,
∴AB=2BE.
在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,
解得:BE=4,
∴AB=AC=8,AD=1.
在Rt△CAD中,AC2+AD2=CD2,即82+12=CD2,
解得:CD=4.
【点睛】
本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度.
22、
【解析】
根据分式的混合运算法则把原式进行化简即可.
【详解】
原式=÷(﹣)
=÷
=•
=.
【点睛】
本题考查的是分式的混合运算,熟知分式的混合运算的法则是解答此题的关键.
23、树高为 5.5 米
【解析】
根据两角相等的两个三角形相似,可得 △DEF∽△DCB ,利用相似三角形的对边成比例,可得, 代入数据计算即得BC的长,由 AB=AC+BC ,即可求出树高.
【详解】
∵∠DEF=∠DCB=90°,∠D=∠D,
∴△DEF∽△DCB
∴ ,
∵DE=0.4m,EF=0.2m,CD=8m,
∴,
∴CB=4(m),
∴AB=AC+BC=1.5+4=5.5(米)
答:树高为 5.5 米.
【点睛】
本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.
24、(1)24.2米(2) 超速,理由见解析
【解析】
(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.
(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.
【详解】
解:(1)由題意得,
在Rt△ADC中,,
在Rt△BDC中,,
∴AB=AD-BD=(米).
(2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),
∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.
∵43.56千米/小时大于40千米/小时,
∴此校车在AB路段超速.
广东省广州市广州外国语校2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份广东省广州市广州外国语校2021-2022学年中考数学考试模拟冲刺卷含解析,共21页。试卷主要包含了答题时请按要求用笔,下列计算正确的是等内容,欢迎下载使用。
广东省深圳市高峰校2022年中考数学考试模拟冲刺卷含解析: 这是一份广东省深圳市高峰校2022年中考数学考试模拟冲刺卷含解析,共20页。
2022年广东省东莞市东方明珠校中考数学考试模拟冲刺卷含解析: 这是一份2022年广东省东莞市东方明珠校中考数学考试模拟冲刺卷含解析,共18页。试卷主要包含了下列计算正确的是,计算±的值为,计算3×等内容,欢迎下载使用。