广东省肇庆市端州区南国中学英文校2021-2022学年中考一模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.关于的一元二次方程有两个不相等的实数根,则的取值范围为( )
A. B. C. D.
2.一元二次方程x2﹣5x﹣6=0的根是( )
A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=﹣6 D.x1=﹣1,x2=6
3.已知实数a、b满足,则
A. B. C. D.
4.函数(为常数)的图像上有三点,,,则函数值的大小关系是( )
A.y3<y1<y2 B.y3<y2<y1 C.y1<y2<y3 D.y2<y3<y1
5.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )
A.14° B.15° C.16° D.17°
6.计算2a2+3a2的结果是( )
A.5a4 B.6a2 C.6a4 D.5a2
7.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )
A.3.5 B.3 C.4 D.4.5
8.如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM=( )
A. B.1 C. D.
9.若x﹣2y+1=0,则2x÷4y×8等于( )
A.1 B.4 C.8 D.﹣16
10.据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将14400用科学记数法表示为( )
A.14.4×103 B.144×102 C.1.44×104 D.1.44×10﹣4
11.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( )
A.21.7米 B.22.4米 C.27.4米 D.28.8米
12.的值是
A.±3 B.3 C.9 D.81
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在四边形ABCD中,∠B=∠D=90°,AB=3, BC=2,tanA=,则CD=_____.
14.比较大小:_______3(填“”或“”或“”)
15.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则商品的定价是______元
16.分解因式:2a4﹣4a2+2=_____.
17.如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q,且PQ=OQ,则满足条件的∠OCP的大小为_______.
18.如图,在边长为1正方形ABCD中,点P是边AD上的动点,将△PAB沿直线BP翻折,点A的对应点为点Q,连接BQ、DQ.则当BQ+DQ的值最小时,tan∠ABP=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)在平面直角坐标系中,函数()的图象经过点(4,1),直线与图象交于点,与轴交于点.求的值;横、纵坐标都是整数的点叫做整点.记图象在点,之间的部分与线段,,围成的区域(不含边界)为.
①当时,直接写出区域内的整点个数;
②若区域内恰有4个整点,结合函数图象,求的取值范围.
20.(6分)某学校为了解学生的课余活动情况,抽样调查了部分学生,将所得数据处理后,制成折线统计图(部分)和扇形统计图(部分)如图:
(1)在这次研究中,一共调查了 学生,并请补全折线统计图;
(2)该校共有2200名学生,估计该校爱好阅读和爱好体育的学生一共有多少人?
21.(6分)如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.
分别求出直线AB和这条抛物线的解析式.若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.
22.(8分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.
若AC=4,BC=2,求OE的长.试判断∠A与∠CDE的数量关系,并说明理由.
23.(8分)在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A-国学诵读”、“B-演讲”、“C-课本剧”、“D-书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意思,随机调查了部分学生,结果统计如下:
(1)根据题中信息补全条形统计图.
(2)所抽取的学生参加其中一项活动的众数是 .
(3)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?
24.(10分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)求扇形统计图中C所对圆心角的度数;
(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
25.(10分)如图,在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B两港口沿AP,BP的路线去小岛捕鱼作业.已知小岛P在A港的北偏东60°方向,在B港的北偏西45°方向,小岛P距海岸线MN的距离为30海里.
求AP,BP的长(参考数据:≈1.4,≈1.7,≈2.2);甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?
26.(12分)程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?
27.(12分)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
试题分析:根据题意得△=32﹣4m>0,
解得m<.
故选B.
考点:根的判别式.
点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
2、D
【解析】
本题应对原方程进行因式分解,得出(x-6)(x+1)=1,然后根据“两式相乘值为1,这两式中至少有一式值为1.”来解题.
【详解】
x2-5x-6=1
(x-6)(x+1)=1
x1=-1,x2=6
故选D.
【点睛】
本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法.
3、C
【解析】
根据不等式的性质进行判断.
【详解】
解:A、,但不一定成立,例如:,故本选项错误;
B、,但不一定成立,例如:,,故本选项错误;
C、时,成立,故本选项正确;
D、时,成立,则不一定成立,故本选项错误;
故选C.
【点睛】
考查了不等式的性质要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以或除以同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.
4、A
【解析】
试题解析:∵函数y=(a为常数)中,-a1-1<0,
∴函数图象的两个分支分别在二、四象限,在每一象限内y随x的增大而增大,
∵>0,
∴y3<0;
∵-<-,
∴0<y1<y1,
∴y3<y1<y1.
故选A.
5、C
【解析】
依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.
【详解】
如图,
∵∠ABC=60°,∠2=44°,
∴∠EBC=16°,
∵BE∥CD,
∴∠1=∠EBC=16°,
故选:C.
【点睛】
本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.
6、D
【解析】
直接合并同类项,合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.
【详解】
2a2+3a2=5a2.
故选D.
【点睛】
本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.
7、B
【解析】
解:∵∠ACB=90°,∠ABC=60°,
∴∠A=10°,
∵BD平分∠ABC,
∴∠ABD=∠ABC=10°,
∴∠A=∠ABD,
∴BD=AD=6,
∵在Rt△BCD中,P点是BD的中点,
∴CP=BD=1.
故选B.
8、D
【解析】
由旋转的性质得到AB=BE,根据菱形的性质得到AE=AB,推出△ABE是等边三角形,得到AB=3,AD=,根据三角函数的定义得到∠BAC=30°,求得AC⊥BE,推出C在对角线AH上,得到A,C,H共线,于是得到结论.
【详解】
如图,连接AC交BE于点O,
∵将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,
∴AB=BE,
∵四边形AEHB为菱形,
∴AE=AB,
∴AB=AE=BE,
∴△ABE是等边三角形,
∵AB=3,AD=,
∴tan∠CAB=,
∴∠BAC=30°,
∴AC⊥BE,
∴C在对角线AH上,
∴A,C,H共线,
∴AO=OH=AB=,
∵OC=BC=,
∵∠COB=∠OBG=∠G=90°,
∴四边形OBGM是矩形,
∴OM=BG=BC=,
∴HM=OH﹣OM=,
故选D.
【点睛】
本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键.
9、B
【解析】
先把原式化为2x÷22y×23的形式,再根据同底数幂的乘法及除法法则进行计算即可.
【详解】
原式=2x÷22y×23,
=2x﹣2y+3,
=22,
=1.
故选:B.
【点睛】
本题考查的是同底数幂的乘法及除法运算,根据题意把原式化为2x÷22y×23的形式是解答此题的关键.
10、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
【详解】
14400=1.44×1.
故选C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
11、A
【解析】
作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=,构建方程即可解决问题.
【详解】
作BM⊥ED交ED的延长线于M,CN⊥DM于N.
在Rt△CDN中,∵,设CN=4k,DN=3k,
∴CD=10,
∴(3k)2+(4k)2=100,
∴k=2,
∴CN=8,DN=6,
∵四边形BMNC是矩形,
∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,
在Rt△AEM中,tan24°=,
∴0.45=,
∴AB=21.7(米),
故选A.
【点睛】
本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
12、C
【解析】
试题解析:∵
∴的值是3
故选C.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.
【详解】
如图,延长AD、BC相交于点E,
∵∠B=90°,
∴,
∴BE=,
∴CE=BE-BC=2,AE=,
∴,
又∵∠CDE=∠CDA=90°,
∴在Rt△CDE中,,
∴CD=.
14、>.
【解析】
先利用估值的方法先得到≈3.4,再进行比较即可.
【详解】
解:∵≈3.4,3.4>3.
∴>3.
故答案为:>.
【点睛】
本题考查了实数的比较大小,对进行合理估值是解题的关键.
15、300
【解析】
设成本为x元,标价为y元,根据已知条件可列二元一次方程组即可解出定价.
【详解】
设成本为x元,标价为y元,依题意得,解得
故定价为300元.
【点睛】
此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程再求解.
16、1(a+1)1(a﹣1)1.
【解析】
原式提取公因式,再利用完全平方公式分解即可.
【详解】
解:原式=1(a4﹣1a1+1)=1(a1﹣1)1=1(a+1)1(a﹣1)1,
故答案为:1(a+1)1(a﹣1)1
【点睛】
本题主要考查提取公因式与公式法的综合运用,关键要掌握提取公因式之后,根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式.
17、40°
【解析】
:在△QOC中,OC=OQ,
∴∠OQC=∠OCQ,
在△OPQ中,QP=QO,
∴∠QOP=∠QPO,
又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,
∴3∠OCP=120°,
∴∠OCP=40°
18、﹣1
【解析】
连接DB,若Q点落在BD上,此时和最短,且为,设AP=x,则PD=1﹣x,PQ=x.解直角三角形得到AP=﹣1,根据三角函数的定义即可得到结论.
【详解】
如图:
连接DB,若Q点落在BD上,此时和最短,且为,
设AP=x,则PD=1﹣x,PQ=x.
∵∠PDQ=45°,
∴PD=PQ,即1﹣x=,
∴x=﹣1,
∴AP=﹣1,
∴tan∠ABP==﹣1,
故答案为:﹣1.
【点睛】
本题考查了翻折变换(折叠问题),正方形的性质,轴对称﹣最短路线问题,正确的理解题意是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)4;(2)①3个.(1,0),(2,0),(3,0).②或.
【解析】
分析:(1)根据点(4,1)在()的图象上,即可求出的值;
(2)①当时,根据整点的概念,直接写出区域内的整点个数即可.
②分.当直线过(4,0)时,.当直线过(5,0)时,.当直线过(1,2)时,.当直线过(1,3)时四种情况进行讨论即可.
详解:(1)解:∵点(4,1)在()的图象上.
∴,
∴.
(2)① 3个.(1,0),(2,0),(3,0).
② .当直线过(4,0)时:,解得
.当直线过(5,0)时:,解得
.当直线过(1,2)时:,解得
.当直线过(1,3)时:,解得
∴综上所述:或.
点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.
20、(1)200名;折线图见解析;(2)1210人.
【解析】
(1)由“其他”的人数和所占百分数,求出全部调查人数;先由“体育”所占百分数和全部调查人数求出体育的人数,进一步求出阅读的人数,补全折线统计图;
(2)利用样本估计总体的方法计算即可解答.
【详解】
(1)调查学生总人数为40÷20%=200(人),体育人数为:200×30%=60(人),阅读人数为:200﹣(60+30+20+40)=200﹣150=50(人).
补全折线统计图如下:
.
(2)2200×=1210(人).
答:估计该校学生中爱好阅读和爱好体育的人数大约是1210人.
【点睛】
本题考查了统计知识的应用,试题以图表为载体,要求学生能从中提取信息来解题,与实际生活息息相关,符合新课标的理念.
21、 (1)抛物线的解析式是.直线AB的解析式是.
(2) .
(3)P点的横坐标是或.
【解析】
(1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,﹣3)分别代入y=x2+mx+n与y=kx+b,得到关于m、n的两个方程组,解方程组即可;
(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),用P点的纵坐标减去M的纵坐标得到PM的长,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根据二次函数的最值得到
当t=﹣=时,PM最长为=,再利用三角形的面积公式利用S△ABM=S△BPM+S△APM计算即可;
(3)由PM∥OB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;当P在第三象限:PM=OB=3,t2﹣3t=3,分别解一元二次方程即可得到满足条件的t的值.
【详解】
解:(1)把A(3,0)B(0,-3)代入,得
解得
所以抛物线的解析式是.
设直线AB的解析式是,把A(3,0)B(0,)代入,得
解得
所以直线AB的解析式是.
(2)设点P的坐标是(),则M(,),因为在第四象限,所以PM=,当PM最长时,此时
==.
(3)若存在,则可能是:
①P在第四象限:平行四边形OBMP ,PM=OB=3, PM最长时,所以不可能.
②P在第一象限平行四边形OBPM: PM=OB=3,,解得,(舍去),所以P点的横坐标是.
③P在第三象限平行四边形OBPM:PM=OB=3,,解得(舍去),
①,所以P点的横坐标是.
所以P点的横坐标是或.
22、(1);(2)∠CDE=2∠A.
【解析】
(1)在Rt△ABC中,由勾股定理得到AB的长,从而得到半径AO .再由△AOE∽△ACB,得到OE的长;
(2)连结OC,得到∠1=∠A,再证∠3=∠CDE,从而得到结论.
【详解】
(1)∵AB是⊙O的直径,
∴∠ACB=90°,
在Rt△ABC中,由勾股定理得:
AB=
=,
∴AO=AB=.
∵OD⊥AB,
∴∠AOE=∠ACB=90°,
又∵∠A=∠A,
∴△AOE∽△ACB,
∴,
∴OE=
=.
(2)∠CDE=2∠A.理由如下:
连结OC,
∵OA=OC,
∴∠1=∠A,
∵CD是⊙O的切线,
∴OC⊥CD,
∴∠OCD=90°,
∴∠2+∠CDE=90°,
∵OD⊥AB,
∴∠2+∠3=90°,
∴∠3=∠CDE.
∵∠3=∠A+∠1=2∠A,
∴∠CDE=2∠A.
考点:切线的性质;探究型;和差倍分.
23、(1)见解析(2)A-国学诵读(3)360人
【解析】
(1)根据统计图中C的人数和所占百分比可求出被调查的总人数,进而求出活动B和D人数,故可补全条形统计图;(2)由条形统计图知众数为“A-国学诵读”(3)先求出参加活动A的占比,再乘以全校人数即可.
【详解】
(1)由题意可得,被调查的总人数为12÷20%=60,希望参加活动B的人数为60×15%=9,希望参加活动D的人数为60-27-9-12=12,故补全条形统计图如下:
(2)由条形统计图知众数为“A-国学诵读”;
(3)由题意得全校学生希望参加活动A的人数为800×=360(人)
【点睛】
此题主要考查统计图的应用,解题的关键是根据题意求出调查的总人数再进行求解.
24、(1)本次参加抽样调查的居民有600人;(2)补图见解析;(3)72°;(4).
【解析】
试题分析:(1)用B的频数除以B所占的百分比即可求得结论;
(2)分别求得C的频数及其所占的百分比即可补全统计图;
(3)算出A的所占的百分比,再进一步算出C所占的百分比,再扇形统计图中C所对圆心角的度数;
(4)列出树形图即可求得结论.
试题解析:(1)60÷10%=600(人).
答:本次参加抽样调查的居民有600人.
(2)如图;
(3),360°×(1-10%-30%-40%)=72°.
(4)如图;
(列表方法略,参照给分).
P(C粽)=.
答:他第二个吃到的恰好是C粽的概率是.
考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法.
25、(1)AP=60海里,BP=42(海里);(2)甲船的速度是24海里/时,乙船的速度是20海里/时
【解析】
(1)过点P作PE⊥AB于点E,则有PE=30海里,由题意,可知∠PAB=30°,∠PBA=45°,从而可得 AP=60海里,在Rt△PEB中,利用勾股定理即可求得BP的长;
(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据甲船比乙船晚到小岛24分钟列出分式方程,求解后进行检验即可得.
【详解】
(1)如图,过点P作PE⊥MN,垂足为E,
由题意,得∠PAB=90°-60°=30°,∠PBA=90°-45°=45°,
∵PE=30海里,∴AP=60海里,
∵PE⊥MN,∠PBA=45°,∴∠PBE=∠BPE= 45°,
∴PE=EB=30海里,
在Rt△PEB中,BP==30≈42海里,
故AP=60海里,BP=42(海里);
(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,
根据题意,得,
解得x=20,
经检验,x=20是原方程的解,
甲船的速度为1.2x=1.2×20=24(海里/时).,
答:甲船的速度是24海里/时,乙船的速度是20海里/时.
【点睛】
本题考查了勾股定理的应用,分式方程的应用,含30度角的直角三角形的性质,等腰直角三角形的判定与性质,熟练掌握各相关知识是解题的关键.
26、大和尚有25人,小和尚有75人.
【解析】
设大和尚有x人,小和尚有y人,根据100个和尚吃100个馒头且1个大和尚分3个、3个小和尚分1个,即可得出关于x,y的二元一次方程组,解之即可得出结论.
【详解】
解:设大和尚有x人,小和尚有y人,
依题意,得:,
解得:.
答:大和尚有25人,小和尚有75人.
【点睛】
考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
27、1平方米
【解析】
设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据时间=工作总量÷工作效率结合提前11天完成任务,即可得出关于x的分式方程,解之即可得出结论.
【详解】
解:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,
根据题意得:﹣=11,
解得:x=500,
经检验,x=500是原方程的解,
∴1.2x=1.
答:实际平均每天施工1平方米.
【点睛】
考查了分式方程的应用,解题的关键是找准等量关系,正确列出分式方程.
广东省肇庆市端州区南国中学英文学校2023-2024学年数学九年级第一学期期末调研试题含答案: 这是一份广东省肇庆市端州区南国中学英文学校2023-2024学年数学九年级第一学期期末调研试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列事件为必然事件的是,已知,则等于等内容,欢迎下载使用。
2023-2024学年广东省肇庆市端州区端州区南国中学英文学校数学九年级第一学期期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年广东省肇庆市端州区端州区南国中学英文学校数学九年级第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,如图,在中,若,则的长是等内容,欢迎下载使用。
广东省肇庆市端州区端州区南国中学英文学校2023-2024学年数学八上期末调研试题含答案: 这是一份广东省肇庆市端州区端州区南国中学英文学校2023-2024学年数学八上期末调研试题含答案,共7页。试卷主要包含了给出下列四组条件,在平面直角坐标系中,点A',下列命题是假命题的是,我们规定,下列计算中,不正确的是等内容,欢迎下载使用。