|试卷下载
终身会员
搜索
    上传资料 赚现金
    湖南省常德市芷兰实验校2022年中考数学猜题卷含解析
    立即下载
    加入资料篮
    湖南省常德市芷兰实验校2022年中考数学猜题卷含解析01
    湖南省常德市芷兰实验校2022年中考数学猜题卷含解析02
    湖南省常德市芷兰实验校2022年中考数学猜题卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省常德市芷兰实验校2022年中考数学猜题卷含解析

    展开
    这是一份湖南省常德市芷兰实验校2022年中考数学猜题卷含解析,共23页。试卷主要包含了一、单选题,已知,我市某一周的最高气温统计如下表,五个新篮球的质量等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为( )

    A.2 B.2 C. D.2
    2.下列分式是最简分式的是( )
    A. B. C. D.
    3.计算tan30°的值等于( )
    A. B. C. D.
    4.一、单选题
    如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=(  )

    A.75° B.80° C.85° D.90°
    5.已知:二次函数y=ax2+bx+c(a≠1)的图象如图所示,下列结论中:①abc>1;②b+2a=1;③a-b1.其中正确的项有( )

    A.2个 B.3个 C.4个 D.5个
    6.关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围在数轴上表示为( )
    A. B.
    C. D.
    7.(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:
    最高气温(℃)

    25

    26

    27

    28

    天 数

    1

    1

    2

    3

    则这组数据的中位数与众数分别是( )
    A.27,28 B.27.5,28 C.28,27 D.26.5,27
    8.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为(  )
    A.4 B.3 C.2 D.1
    9.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是(  )
    A.﹣2.5 B.﹣0.6 C.+0.7 D.+5
    10.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是(  )

    A.小丽从家到达公园共用时间20分钟 B.公园离小丽家的距离为2000米
    C.小丽在便利店时间为15分钟 D.便利店离小丽家的距离为1000米
    11.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )

    A.AB=AD B.AC平分∠BCD
    C.AB=BD D.△BEC≌△DEC
    12.下列事件中为必然事件的是( )
    A.打开电视机,正在播放茂名新闻 B.早晨的太阳从东方升起
    C.随机掷一枚硬币,落地后正面朝上 D.下雨后,天空出现彩虹
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.计算:﹣|﹣2|+()﹣1=_____.
    14.垫球是排球队常规训练的重要项目之一.如图所示的数据是运动员张华十次垫球测试的成绩.测试规则为每次连续接球10个,每垫球到位1个记1分.则运动员张华测试成绩的众数是_____.

    15.如图,数轴上不同三点对应的数分别为,其中,则点表示的数是__________.

    16.如图,的顶点落在两条平行线上,点D、E、F分别是三边中点,平行线间的距离是8,,移动点A,当时,EF的长度是______.

    17.若﹣4xay+x2yb=﹣3x2y,则a+b=_____.
    18.已知a+=2,求a2+=_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)关于的一元二次方程.求证:方程总有两个实数根;若方程有一根小于1,求的取值范围.
    20.(6分)有一个n位自然数能被x0整除,依次轮换个位数字得到的新数能被x0+1整除,再依次轮换个位数字得到的新数能被x0+2整除,按此规律轮换后, 能被x0+3整除,…,能被x0+n﹣1整除,则称这个n位数是x0的一个“轮换数”.
    例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;
    再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2个一个“轮换数”.
    (1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”.
    (2)若三位自然数是3的一个“轮换数”,其中a=2,求这个三位自然数.
    21.(6分)如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.
    (1)求证:四边形ABEF是平行四边形;
    (2)当∠ABC为多少度时,四边形ABEF为矩形?请说明理由.

    22.(8分)如图,已知抛物线(>0)与轴交于A,B两点(A点在B点的左边),与轴交于点C。
    (1)如图1,若△ABC为直角三角形,求的值;
    (2)如图1,在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B,C,P,Q为顶点的四边形是平行四边形,求P点的坐标;
    (3)如图2,过点A作直线BC的平行线交抛物线于另一点D,交轴交于点E,若AE:ED=1:4,求的值.

    23.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E.
    (1)求证:AC平分∠DAB;
    (2)若BE=3,CE=3,求图中阴影部分的面积.

    24.(10分)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.

    25.(10分)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“舞蹈”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如图统计图:

    根据统计图所提供的倍息,解答下列问题:
    (1)本次抽样调查中的学生人数是多少人;
    (2 )补全条形统计图;
    (3)若该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数;
    (4)现有爱好舞蹈的两名男生两名女生想参加舞蹈社,但只能选两名学生,请你用列表或画树状图的方法,求出正好选到一男一女的概率.
    26.(12分)如图,经过点C(0,﹣4)的抛物线()与x轴相交于A(﹣2,0),B两点.

    (1)a 0, 0(填“>”或“<”);
    (2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;
    (3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.
    27.(12分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.求证:CD∥AB;填空:
    ①当∠DAE=   时,四边形ADFP是菱形;
    ②当∠DAE=   时,四边形BFDP是正方形.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    本题考查的圆与直线的位置关系中的相切.连接OC,EC所以∠EOC=2∠D=60°,所以△ECO为等边三角形.又因为弦EF∥AB所以OC垂直EF故∠OEF=30°所以EF=OE=2.
    2、C
    【解析】
    解:A.,故本选项错误;
    B.,故本选项错误;
    C.,不能约分,故本选项正确;
    D.,故本选项错误.
    故选C.
    点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键.
    3、C
    【解析】
    tan30°= .故选C.
    4、A
    【解析】
    分析:依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.
    详解:∵AD是BC边上的高,∠ABC=60°,
    ∴∠BAD=30°,
    ∵∠BAC=50°,AE平分∠BAC,
    ∴∠BAE=25°,
    ∴∠DAE=30°﹣25°=5°,
    ∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,
    ∴∠EAD+∠ACD=5°+70°=75°,
    故选A.
    点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.
    5、B
    【解析】
    根据二次函数的图象与性质判断即可.
    【详解】
    ①由抛物线开口向上知: a>1; 抛物线与y轴的负半轴相交知c<1; 对称轴在y轴的右侧知:b>1;所以:abc<1,故①错误;
    ②对称轴为直线x=-1,,即b=2a,
    所以b-2a=1.故②错误;
    ③由抛物线的性质可知,当x=-1时,y有最小值,
    即a-b+c<(),
    即a﹣b<m(am+b)(m≠﹣1),
    故③正确;
    ④因为抛物线的对称轴为x=1, 且与x轴的一个交点的横坐标为1, 所以另一个交点的横坐标为-3.因此方程ax+bx+c=1的两根分别是1,-3.故④正确;
    ⑤由图像可得,当x=2时,y>1,
    即: 4a+2b+c>1,
    故⑤正确.
    故正确选项有③④⑤,
    故选B.
    【点睛】
    本题二次函数的图象与性质,牢记公式和数形结合是解题的关键.
    6、D
    【解析】
    试题分析:根据根的判别式和根与系数的关系列出不等式,求出解集.
    解:∵关于x的一元二次方程x2+2x+k+1=0有两个实根,
    ∴△≥0,
    ∴4﹣4(k+1)≥0,
    解得k≤0,
    ∵x1+x2=﹣2,x1•x2=k+1,
    ∴﹣2﹣(k+1)<﹣1,
    解得k>﹣2,
    不等式组的解集为﹣2<k≤0,
    在数轴上表示为:

    故选D.
    点评:本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键.
    7、A
    【解析】
    根据表格可知:数据25出现1次,26出现1次,27出现2次,28出现3次,
    ∴众数是28,
    这组数据从小到大排列为:25,26,27,27,28,28,28
    ∴中位数是27
    ∴这周最高气温的中位数与众数分别是27,28
    故选A.
    8、A
    【解析】
    分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.
    详解:根据题意,得:=2x
    解得:x=3,
    则这组数据为6、7、3、9、5,其平均数是6,
    所以这组数据的方差为 [(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,
    故选A.
    点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.
    9、B
    【解析】
    求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.
    【详解】
    解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,
    ∵5>3.5>2.5>0.7>0.6,
    ∴最接近标准的篮球的质量是-0.6,
    故选B.
    【点睛】
    本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.
    10、C
    【解析】
    解:A.小丽从家到达公园共用时间20分钟,正确;
    B.公园离小丽家的距离为2000米,正确;
    C.小丽在便利店时间为15﹣10=5分钟,错误;
    D.便利店离小丽家的距离为1000米,正确.
    故选C.
    11、C
    【解析】
    解:∵AC垂直平分BD,∴AB=AD,BC=CD,
    ∴AC平分∠BCD,平分∠BCD,BE=DE.∴∠BCE=∠DCE.
    在Rt△BCE和Rt△DCE中,∵BE=DE,BC=DC,
    ∴Rt△BCE≌Rt△DCE(HL).
    ∴选项ABD都一定成立.
    故选C.
    12、B
    【解析】
    分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件:
    A、打开电视机,正在播放茂名新闻,可能发生,也可能不发生,是随机事件,故本选项错误;
    B、早晨的太阳从东方升起,是必然事件,故本选项正确;
    C、随机掷一枚硬币,落地后可能正面朝上,也可能背面朝上,故本选项错误;
    D、下雨后,天空出现彩虹,可能发生,也可能不发生,故本选项错误.
    故选B.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、﹣1
    【解析】
    根据立方根、绝对值及负整数指数幂等知识点解答即可.
    【详解】
    原式= -2 -2+3= -1
    【点睛】
    本题考查了实数的混合运算,解题的关键是掌握运算法则及运算顺序.
    14、1
    【解析】
    根据众数定义:一组数据中出现次数最多的数据叫做众数可得答案.
    【详解】
    运动员张华测试成绩的众数是1.
    故答案为1.
    【点睛】
    本题主要考查了众数,关键是掌握众数定义.
    15、1
    【解析】
    根据两点间的距离公式可求B点坐标,再根据绝对值的性质即可求解.
    【详解】
    ∵数轴上不同三点A、B、C对应的数分别为a、b、c,a=-4,AB=3,
    ∴b=3+(-4)=-1,
    ∵|b|=|c|,
    ∴c=1.
    故答案为1.
    【点睛】
    考查了实数与数轴,绝对值,关键是根据两点间的距离公式求得B点坐标.
    16、1
    【解析】
    过点D作于点H,根等腰三角形的性质求得BD的长度,继而得到,结合三角形中位线定理求得EF的长度即可.
    【详解】
    解:如图,过点D作于点H,

    过点D作于点H,,

    又平行线间的距离是8,点D是AB的中点,

    在直角中,由勾股定理知,.
    点D是AB的中点,

    又点E、F分别是AC、BC的中点,
    是的中位线,

    故答案是:1.
    【点睛】
    考查了三角形中位线定理和平行线的性质,解题的关键是根据平行线的性质求得DH的长度.
    17、1
    【解析】
    两个单项式合并成一个单项式,说明这两个单项式为同类项.
    【详解】
    解:由同类项的定义可知,
    a=2,b=1,
    ∴a+b=1.
    故答案为:1.
    【点睛】
    本题考查的知识点为:同类项中相同字母的指数是相同的.
    18、1
    【解析】
    试题分析:∵==4,∴=4-1=1.故答案为1.
    考点:完全平方公式.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(2)见解析;(2)k<2.
    【解析】
    (2)根据方程的系数结合根的判别式,可得△=(k-2)2≥2,由此可证出方程总有两个实数根;
    (2)利用分解因式法解一元二次方程,可得出x=2、x=k+2,根据方程有一根小于2,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.
    【详解】
    (2)证明:∵在方程中,△=[-(k+3)]-4×2×(2k+2)=k-2k+2=(k-2)≥2,
    ∴方程总有两个实数根.
    (2) ∵x-(k+3)x+2k+2=(x-2)(x-k-2)=2,
    ∴x=2,x=k+2.
    ∵方程有一根小于2,
    ∴k+2<2,解得:k<2,
    ∴k的取值范围为k<2.
    【点睛】
    此题考查根的判别式,解题关键在于掌握运算公式.
    20、 (1)见解析;(2) 201,207,1
    【解析】
    试题分析:(1)先设出两位自然数的十位数字,表示出这个两位自然数,和轮换两位自然数即可;
    (2)先表示出三位自然数和轮换三位自然数,再根据能被5整除,得出b的可能值,进而用4整除,得出c的可能值,最后用能被3整除即可.
    试题解析:
    (1)设两位自然数的十位数字为x,则个位数字为2x,
    ∴这个两位自然数是10x+2x=12x,
    ∴这个两位自然数是12x能被6整除,
    ∵依次轮换个位数字得到的两位自然数为10×2x+x=21x
    ∴轮换个位数字得到的两位自然数为21x能被7整除,
    ∴一个两位自然数的个位数字是十位数字的2倍,这个两位自然数一定是“轮换数”.
    (2)∵三位自然数是3的一个“轮换数”,且a=2,
    ∴100a+10b+c能被3整除,
    即:10b+c+200能被3整除,
    第一次轮换得到的三位自然数是100b+10c+a能被4整除,
    即100b+10c+2能被4整除,
    第二次轮换得到的三位自然数是100c+10a+b能被5整除,
    即100c+b+20能被5整除,
    ∵100c+b+20能被5整除,
    ∴b+20的个位数字不是0,便是5,
    ∴b=0或b=5,
    当b=0时,
    ∵100b+10c+2能被4整除,
    ∴10c+2能被4整除,
    ∴c只能是1,3,5,7,9;
    ∴这个三位自然数可能是为201,203,205,207,209,
    而203,205,209不能被3整除,
    ∴这个三位自然数为201,207,
    当b=5时,∵100b+10c+2能被4整除,
    ∴10c+502能被4整除,
    ∴c只能是1,5,7,9;
    ∴这个三位自然数可能是为251,1,257,259,
    而251,257,259不能被3整除,
    ∴这个三位自然数为1,
    即这个三位自然数为201,207,1.
    【点睛】此题是数的整除性,主要考查了3的倍数,4的倍数,5的倍数的特点,解本题的关键是用5的倍数求出b的值.
    21、(1)证明见解析(2)当∠ABC=60°时,四边形ABEF为矩形
    【解析】
    (1)根据旋转得出CA=CE,CB=CF,根据平行四边形的判定得出即可;
    (2)根据等边三角形的判定得出△ABC是等边三角形,求出AE=BF,根据矩形的判定得出即可.
    【详解】
    (1)∵将△ABC绕点C顺时针旋转180°得到△EFC,∴△ABC≌△EFC,∴CA=CE,CB=CF,∴四边形ABEF是平行四边形;
    (2)当∠ABC=60°时,四边形ABEF为矩形,理由是:∵∠ABC=60°,AB=AC,∴△ABC是等边三角形,∴AB=AC=BC.
    ∵CA=CE,CB=CF,∴AE=BF.
    ∵四边形ABEF是平行四边形,∴四边形ABEF是矩形.
    【点睛】
    本题考查了旋转的性质和矩形的判定、平行四边形的判定、等边三角形的性质和判定等知识点,能综合运用知识点进行推理是解答此题的关键.
    22、(1);(2)点P的坐标为 ;(3).
    【解析】
    (1)利用三角形相似可求AO•OB,再由一元二次方程根与系数关系求AO•OB构造方程求n;
    (2)求出B、C坐标,设出点Q坐标,利用平行四边形对角线互相平分性质,分类讨论点P坐标,分别代入抛物线解析式,求出Q点坐标;
    (3)设出点D坐标(a,b),利用相似表示OA,再由一元二次方程根与系数关系表示OB,得到点B坐标,进而找到b与a关系,代入抛物线求a、n即可.
    【详解】
    (1)若△ABC为直角三角形
    ∴△AOC∽△COB
    ∴OC2=AO•OB
    当y=0时,0=x2-x-n
    由一元二次方程根与系数关系
    -OA•OB=OC2
    n2==−2n
    解得n=0(舍去)或n=2
    ∴抛物线解析式为y=;
    (2)由(1)当=0时
    解得x1=-1,x2=4
    ∴OA=1,OB=4
    ∴B(4,0),C(0,-2)
    ∵抛物线对称轴为直线x=-=−
    ∴设点Q坐标为(,b)
    由平行四边形性质可知
    当BQ、CP为平行四边形对角线时,点P坐标为(,b+2)
    代入y=x2-x-2
    解得b=,则P点坐标为(,)
    当CQ、PB为为平行四边形对角线时,点P坐标为(-,b-2)
    代入y=x2-x-2
    解得b=,则P坐标为(-,)
    综上点P坐标为(,),(-,);
    (3)设点D坐标为(a,b)
    ∵AE:ED=1:4
    则OE=b,OA=a
    ∵AD∥AB
    ∴△AEO∽△BCO
    ∵OC=n

    ∴OB=
    由一元二次方程根与系数关系得,
    ∴b=a2
    将点A(-a,0),D(a,a2)代入y=x2-x-n

    解得a=6或a=0(舍去)
    则n= .
    【点睛】
    本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.
    23、(1)证明见解析;(2)
    【解析】
    (1)连接OC,如图,利用切线的性质得CO⊥CD,则AD∥CO,所以∠DAC=∠ACO,加上∠ACO=∠CAO,从而得到∠DAC=∠CAO;
    (2)设⊙O半径为r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用锐角三角函数的定义计算出∠COE=60°,然后根据扇形的面积公式,利用S阴影=S△COE﹣S扇形COB进行计算即可.
    【详解】
    解:(1)连接OC,如图,
    ∵CD与⊙O相切于点E,
    ∴CO⊥CD,
    ∵AD⊥CD,
    ∴AD∥CO,
    ∴∠DAC=∠ACO,
    ∵OA=OC,
    ∴∠ACO=∠CAO,
    ∴∠DAC=∠CAO,
    即AC平分∠DAB;
    (2)设⊙O半径为r,
    在Rt△OEC中,∵OE2+EC2=OC2,
    ∴r2+27=(r+3)2,解得r=3,
    ∴OC=3,OE=6,
    ∴cos∠COE=,
    ∴∠COE=60°,
    ∴S阴影=S△COE﹣S扇形COB=•3•3﹣.

    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和扇形的面积公式.
    24、(1)(2)作图见解析;(3).
    【解析】
    (1)利用平移的性质画图,即对应点都移动相同的距离.
    (2)利用旋转的性质画图,对应点都旋转相同的角度.
    (3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长.
    【详解】
    解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点,△A1B1C1即为所求.
    (2)如答图,分别将A1B1,A1C1绕点A1按逆时针方向旋转90°,得到B2,C2,连接B2C2,△A1B2C2即为所求.

    (3)∵,
    ∴点B所走的路径总长=.
    考点:1.网格问题;2.作图(平移和旋转变换);3.勾股定理;4.弧长的计算.
    25、(1)本次抽样调查中的学生人数为100人;(2)补全条形统计图见解析;(3)估计该校课余兴趣爱好为“打球”的学生人数为800人;(4).
    【解析】
    (1)用选“阅读”的人数除以它所占的百分比即可得到调查的总人数;
    (2)先计算出选“舞蹈”的人数,再计算出选“打球”的人数,然后补全条形统计图;
    (3)用2000乘以样本中选“打球”的人数所占的百分比可估计该校课余兴趣爱好为“打球”的学生人数;
    (4)画树状图展示所有12种等可能的结果数,再找出选到一男一女的结果数,然后根据概率公式求解.
    【详解】
    (1)30÷30%=100,
    所以本次抽样调查中的学生人数为100人;
    (2)选”舞蹈”的人数为100×10%=10(人),
    选“打球”的人数为100﹣30﹣10﹣20=40(人),
    补全条形统计图为:

    (3)2000×=800,
    所以估计该校课余兴趣爱好为“打球”的学生人数为800人;
    (4)画树状图为:

    共有12种等可能的结果数,其中选到一男一女的结果数为8,
    所以选到一男一女的概率=.
    【点睛】
    本题考查了条形统计图与扇形统计图,列表法与树状图法求概率,读懂统计图,从中找到有用的信息是解题的关键.本题中还用到了知识点为:概率=所求情况数与总情况数之比.
    26、(1)>,>;(2);(3)E(4,﹣4)或(,4)或(,4).
    【解析】
    (1)由抛物线开口向上,且与x轴有两个交点,即可做出判断;
    (2)根据抛物线的对称轴及A的坐标,确定出B的坐标,将A,B,C三点坐标代入求出a,b,c的值,即可确定出抛物线解析式;
    (3)存在,分两种情况讨论:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CE∥x轴,交抛物线于点E,过点E作EF∥AC,交x轴于点F,如图1所示;
    (ii)假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,可得AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,分别求出E坐标即可.
    【详解】
    (1)a>0,>0;
    (2)∵直线x=2是对称轴,A(﹣2,0),
    ∴B(6,0),
    ∵点C(0,﹣4),
    将A,B,C的坐标分别代入,解得:,,,
    ∴抛物线的函数表达式为;
    (3)存在,理由为:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CE∥x轴,交抛物线于点E,过点E作EF∥AC,交x轴于点F,如图1所示,

    则四边形ACEF即为满足条件的平行四边形,
    ∵抛物线关于直线x=2对称,
    ∴由抛物线的对称性可知,E点的横坐标为4,
    又∵OC=4,∴E的纵坐标为﹣4,
    ∴存在点E(4,﹣4);
    (ii)假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,
    过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,
    ∴AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,
    ∵AC∥E′F′,
    ∴∠CAO=∠E′F′G,
    又∵∠COA=∠E′GF′=90°,AC=E′F′,
    ∴△CAO≌△E′F′G,
    ∴E′G=CO=4,
    ∴点E′的纵坐标是4,
    ∴,解得:,,
    ∴点E′的坐标为(,4),同理可得点E″的坐标为(,4).

    27、(1)详见解析;(2)①67.5°;②90°.
    【解析】
    (1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;
    (2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;
    ②根据四边形BFDP是正方形,可以求得∠DAE的度数.
    【详解】
    (1)证明:连接OD,如图所示,

    ∵射线DC切⊙O于点D,
    ∴OD⊥CD,
    即∠ODF=90°,
    ∵∠AED=45°,
    ∴∠AOD=2∠AED=90°,
    ∴∠ODF=∠AOD,
    ∴CD∥AB;
    (2)①连接AF与DP交于点G,如图所示,

    ∵四边形ADFP是菱形,∠AED=45°,OA=OD,
    ∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,
    ∴∠AGE=90°,∠DAO=45°,
    ∴∠EAG=45°,∠DAG=∠PEG=22.5°,
    ∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,
    故答案为:67.5°;
    ②∵四边形BFDP是正方形,
    ∴BF=FD=DP=PB,
    ∠DPB=∠PBF=∠BFD=∠FDP=90°,
    ∴此时点P与点O重合,
    ∴此时DE是直径,
    ∴∠EAD=90°,
    故答案为:90°.
    【点睛】
    本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.

    相关试卷

    2023-2024学年湖南省常德市芷兰实验学校数学九年级第一学期期末达标检测试题含答案: 这是一份2023-2024学年湖南省常德市芷兰实验学校数学九年级第一学期期末达标检测试题含答案,共7页。试卷主要包含了如图所示的几何体的左视图是,不等式组的解集在数轴上表示为,若反比例函数y=等内容,欢迎下载使用。

    2023-2024学年湖南省常德市芷兰实验学校数学八年级第一学期期末检测试题含答案: 这是一份2023-2024学年湖南省常德市芷兰实验学校数学八年级第一学期期末检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列图形是轴对称图形的为,已知、均为正整数,且,则,下列各运算中,计算正确的是,4的算术平方根是等内容,欢迎下载使用。

    湖南省常德芷兰实验校2022年中考数学对点突破模拟试卷含解析: 这是一份湖南省常德芷兰实验校2022年中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,-sin60°的倒数为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map