湖北省武汉市青山区重点名校2021-2022学年中考数学全真模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?( )
A. B. C. D.
2.如图,平面直角坐标系xOy中,四边形OABC的边OA在x轴正半轴上,BC∥x轴,∠OAB=90°,点C(3,2),连接OC.以OC为对称轴将OA翻折到OA′,反比例函数y=的图象恰好经过点A′、B,则k的值是( )
A.9 B. C. D.3
3.如图是某几何体的三视图及相关数据,则该几何体的全面积是( )
A.15π B.24π C.20π D.10π
4.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是( )
A. B. C. D.
5.如图,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是( )
A.3 B.4 C.5 D.6
6.如下图所示,该几何体的俯视图是 ( )
A. B. C. D.
7.在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是( )
A.3月份 B.4月份 C.5月份 D.6月份
8.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()
A.米2 B.米2 C.米2 D.米2
9.如图,是的直径,是的弦,连接,,,则与的数量关系为( )
A. B.
C. D.
10.若关于x的不等式组无解,则a的取值范围是( )
A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥3
11.下列各运算中,计算正确的是( )
A.a12÷a3=a4 B.(3a2)3=9a6
C.(a﹣b)2=a2﹣ab+b2 D.2a•3a=6a2
12.某种圆形合金板材的成本y(元)与它的面积(cm2)成正比,设半径为xcm,当x=3时,y=18,那么当半径为6cm时,成本为( )
A.18元 B.36元 C.54元 D.72元
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知二次函数y=ax2+bx(a≠0)的最小值是﹣3,若关于x的一元二次方程ax2+bx+c=0有实数根,则c的最大值是_____.
14.一组数据:1,2,a,4,5的平均数为3,则a=_____.
15.在△ABC中,AB=AC,∠A=36°,DE是AB的垂直平分线,DE交AB于点D,交AC于点E,连接BE.下列结论①BE平分∠ABC;②AE=BE=BC;③△BEC周长等于AC+BC;④E点是AC的中点.其中正确的结论有_____(填序号)
16.已知梯形ABCD,AD∥BC,BC=2AD,如果,,那么=_____(用、 表示).
17.一组数据1,4,4,3,4,3,4的众数是_____.
18.方程=1的解是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)在某校举办的 2012 年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品 200 个以上可以按折扣价出售;购买 200 个以下(包括 200 个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要 1050 元;若多买 35 个,则按折扣价付款,恰好共需 1050 元.设小王按原计划购买纪念品 x 个.
(1)求 x 的范围;
(2)如果按原价购买 5 个纪念品与按打折价购买 6 个纪念品的钱数相同,那么小王原计划购买多少个纪念品?
20.(6分)已知关于的一元二次方程 (为实数且).求证:此方程总有两个实数根;如果此方程的两个实数根都是整数,求正整数的值.
21.(6分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.
治理杨絮一一您选哪一项?(单选)
A.减少杨树新增面积,控制杨树每年的栽种量
B.调整树种结构,逐渐更换现有杨树
C.选育无絮杨品种,并推广种植
D.对雌性杨树注射生物干扰素,避免产生飞絮
E.其他
根据以上统计图,解答下列问题:
(1)本次接受调查的市民共有 人;
(2)扇形统计图中,扇形E的圆心角度数是 ;
(3)请补全条形统计图;
(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.
22.(8分)如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.
求证:AD平分∠BAC;若∠BAC=60∘,OA=4,求阴影部分的面积(结果保留π).
23.(8分)某门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.该门市为促销制定了两种优惠方案:
方案一:买一件甲种商品就赠送一件乙种商品;
方案二:按购买金额打八折付款.
某公司为奖励员工,购买了甲种商品20件,乙种商品x()件.
(1)分别直接写出优惠方案一购买费用(元)、优惠方案二购买费用(元)与所买乙种商品x(件)之间的函数关系式;
(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.
24.(10分)在平面直角坐标系中,O为原点,点A(3,0),点B(0,4),把△ABO绕点A顺时针旋转,得△AB′O′,点B,O旋转后的对应点为B′,O.
(1)如图1,当旋转角为90°时,求BB′的长;
(2)如图2,当旋转角为120°时,求点O′的坐标;
(3)在(2)的条件下,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标.(直接写出结果即可)
25.(10分)如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A,过点P(1,m)作直线PA⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(点B、C不重合),连接CB、CP.
(I)当m=3时,求点A的坐标及BC的长;
(II)当m>1时,连接CA,若CA⊥CP,求m的值;
(III)过点P作PE⊥PC,且PE=PC,当点E落在坐标轴上时,求m的值,并确定相对应的点E的坐标.
26.(12分)如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A(﹣1,a),反比例函数y=(k>0,x>0)的图象过点B,且AB∥x轴.
(1)求a和k的值;
(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=于另一点C,求△OBC的面积.
27.(12分)先化简,再求值:,其中x满足x2﹣x﹣1=1.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
分析:求出扇形的圆心角以及半径即可解决问题;
详解:∵∠A=60°,∠B=100°,
∴∠C=180°﹣60°﹣100°=20°,
∵DE=DC,
∴∠C=∠DEC=20°,
∴∠BDE=∠C+∠DEC=40°,
∴S扇形DBE=.
故选C.
点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=.
2、C
【解析】
设B(,2),由翻折知OC垂直平分AA′,A′G=2EF,AG=2AF,由勾股定理得OC=,根据相似三角形或锐角三角函数可求得A′(,),根据反比例函数性质k=xy建立方程求k.
【详解】
如图,过点C作CD⊥x轴于D,过点A′作A′G⊥x轴于G,连接AA′交射线OC于E,过E作EF⊥x轴于F,
设B(,2),
在Rt△OCD中,OD=3,CD=2,∠ODC=90°,
∴OC==,
由翻折得,AA′⊥OC,A′E=AE,
∴sin∠COD=,
∴AE=,
∵∠OAE+∠AOE=90°,∠OCD+∠AOE=90°,
∴∠OAE=∠OCD,
∴sin∠OAE==sin∠OCD,
∴EF=,
∵cos∠OAE==cos∠OCD,
∴,
∵EF⊥x轴,A′G⊥x轴,
∴EF∥A′G,
∴,
∴,,
∴,
∴A′(,),
∴,
∵k≠0,
∴,
故选C.
【点睛】
本题是反比例函数综合题,常作为考试题中选择题压轴题,考查了反比例函数点的坐标特征、相似三角形、翻折等,解题关键是通过设点B的坐标,表示出点A′的坐标.
3、B
【解析】
解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=π×()2=9π,圆锥的侧面积=×5×π×6=15π,所以圆锥的全面积=9π+15π=24π.故选B.
点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长.也考查了三视图.
4、A
【解析】
根据俯视图即从物体的上面观察得得到的视图,进而得出答案.
【详解】
该几何体的俯视图是:.
故选A.
【点睛】
此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.
5、C
【解析】
根据等腰三角形的性质可得BE=BC=2,再根据三角形中位线定理可求得BD、DE长,根据三角形周长公式即可求得答案.
【详解】
解:∵在△ABC中,AB=AC=3,AE平分∠BAC,
∴BE=CE=BC=2,
又∵D是AB中点,
∴BD=AB=,
∴DE是△ABC的中位线,
∴DE=AC=,
∴△BDE的周长为BD+DE+BE=++2=5,
故选C.
【点睛】
本题考查了等腰三角形的性质、三角形中位线定理,熟练掌握三角形中位线定理是解题的关键.
6、B
【解析】
根据俯视图是从上面看到的图形解答即可.
【详解】
从上面看是三个长方形,故B是该几何体的俯视图.
故选B.
【点睛】
本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
7、B
【解析】
解:各月每斤利润:3月:7.5-4.5=3元,
4月:6-2.5=3.5元,
5月:4.5-2=2.5元,
6月:3-1.5=1.5元,
所以,4月利润最大,
故选B.
8、C
【解析】
连接OD,
∵弧AB的半径OA长是6米,C是OA的中点,∴OC=OA=×6=1.
∵∠AOB=90°,CD∥OB,∴CD⊥OA.
在Rt△OCD中,∵OD=6,OC=1,∴.
又∵,∴∠DOC=60°.
∴(米2).
故选C.
9、C
【解析】
首先根据圆周角定理可知∠B=∠C,再根据直径所得的圆周角是直角可得∠ADB=90°,然后根据三角形的内角和定理可得∠DAB+∠B=90°,所以得到∠DAB+∠C=90°,从而得到结果.
【详解】
解:∵是的直径,
∴∠ADB=90°.
∴∠DAB+∠B=90°.
∵∠B=∠C,
∴∠DAB+∠C=90°.
故选C.
【点睛】
本题考查了圆周角定理及其逆定理和三角形的内角和定理,掌握相关知识进行转化是解题的关键.
10、A
【解析】
【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.
【详解】∵不等式组无解,
∴a﹣4≥3a+2,
解得:a≤﹣3,
故选A.
【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.
11、D
【解析】
【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.
【详解】A、原式=a9,故A选项错误,不符合题意;
B、原式=27a6,故B选项错误,不符合题意;
C、原式=a2﹣2ab+b2,故C选项错误,不符合题意;
D、原式=6a2,故D选项正确,符合题意,
故选D.
【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.
12、D
【解析】
设y与x之间的函数关系式为y=kπx2,由待定系数法就可以求出解析式,再求出x=6时y的值即可得.
【详解】
解:根据题意设y=kπx2,
∵当x=3时,y=18,
∴18=kπ•9,
则k=,
∴y=kπx2=•π•x2=2x2,
当x=6时,y=2×36=72,
故选:D.
【点睛】
本题考查了二次函数的应用,解答时求出函数的解析式是关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、3
【解析】
由一元二次方程ax2+bx+c=0有实数根,可得y=ax2+bx(a≠0)和y=-c有交点,由此即可解答.
【详解】
∵一元二次方程ax2+bx+c=0有实数根,
∴抛物线y=ax2+bx(a≠0)和直线y=-c有交点,
∴-c≥-3,即c≤3,
∴c的最大值为3.
故答案为:3.
【点睛】
本题考查了一元二次方程与二次函数,根据一元二次方程有实数根得到抛物线y=ax2+bx(a≠0)和直线y=-c有交点是解决问题的关键.
14、1
【解析】
依题意有:(1+2+a+4+5)÷5=1,解得a=1.故答案为1.
15、①②③
【解析】
试题分析:根据三角形内角和定理求出∠ABC、∠C的度数,根据线段垂直平分线的性质得到EA=EB,根据等腰三角形的判定定理和三角形的周长公式计算即可.
解:∵AB=AC,∠A=36°,
∴∠ABC=∠C=72°,
∵DE是AB的垂直平分线,
∴EA=EB,
∴∠EBA=∠A=36°,
∴∠EBC=36°,
∴∠EBA=∠EBC,
∴BE平分∠ABC,①正确;
∠BEC=∠EBA+∠A=72°,
∴∠BEC=∠C,
∴BE=BC,
∴AE=BE=BC,②正确;
△BEC周长=BC+CE+BE=BC+CE+EA=AC+BC,③正确;
∵BE>EC,AE=BE,
∴AE>EC,
∴点E不是AC的中点,④错误,
故答案为①②③.
考点:线段垂直平分线的性质;等腰三角形的判定与性质.
16、
【解析】
根据向量的三角形法则表示出,再根据BC、AD的关系解答.
【详解】
如图,
∵,,
∴=-=-,
∵AD∥BC,BC=2AD,
∴==(-)=-.
故答案为-.
【点睛】
本题考查了平面向量,梯形,向量的问题,熟练掌握三角形法则和平行四边形法则是解题的关键.
17、1
【解析】
本题考查了统计的有关知识,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
【详解】
在这一组数据中1是出现次数最多的,故众数是1.
故答案为1.
【点睛】
本题为统计题,考查了众数的定义,是基础题型.
18、x=3
【解析】
去分母得:x﹣1=2,
解得:x=3,
经检验x=3是分式方程的解,
故答案为3.
【点睛】本题主要考查解分式方程,解分式方程的思路是将分式方程化为整式方程,然后求解.去分母后解出的结果须代入最简公分母进行检验,结果为零,则原方程无解;结果不为零,则为原方程的解.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)0<x≤200,且 x是整数(2)175
【解析】
(1)根据商场的规定确定出x的范围即可;
(2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.
【详解】
(1)根据题意得:0<x≤200,且x为整数;
(2)设小王原计划购买x个纪念品,
根据题意得:,
整理得:5x+175=6x,
解得:x=175,
经检验x=175是分式方程的解,且满足题意,
则小王原计划购买175个纪念品.
【点睛】
此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.
20、 (1)证明见解析;(2)或.
【解析】
(1)求出△的值,再判断出其符号即可;
(2)先求出x的值,再由方程的两个实数根都是整数,且m是正整数求出m的值即可.
【详解】
(1)依题意,得
,
,
.
∵,
∴方程总有两个实数根.
(2)∵,
∴,.
∵方程的两个实数根都是整数,且是正整数,
∴或.
∴或.
【点睛】
本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac的关系是解答此题的关键.
21、(1)2000;(2)28.8°;(3)补图见解析;(4)36万人.
【解析】
分析:(1)将A选项人数除以总人数即可得;
(2)用360°乘以E选项人数所占比例可得;
(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;
(4)用总人数乘以样本中C选项人数所占百分比可得.
详解:(1)本次接受调查的市民人数为300÷15%=2000人,
(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,
(3)D选项的人数为2000×25%=500,
补全条形图如下:
(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).
点睛:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
22、(1)见解析;(2)
【解析】
试题分析:
(1)连接OD,则由已知易证OD∥AC,从而可得∠CAD=∠ODA,结合∠ODA=∠OAD,即可得到∠CAD=∠OAD,从而得到AD平分∠BAC;
(2)连接OE、DE,由已知易证△AOE是等边三角形,由此可得∠ADE=∠AOE=30°,由AD平分∠BAC可得∠OAD=30°,从而可得∠ADE=∠OAD,由此可得DE∥AO,从而可得S阴影=S扇形ODE,这样只需根据已知条件求出扇形ODE的面积即可.
试题解析:
(1)连接OD.
∵BC是⊙O的切线,D为切点,
∴OD⊥BC.
又∵AC⊥BC,
∴OD∥AC,
∴∠ADO=∠CAD.
又∵OD=OA,
∴∠ADO=∠OAD,
∴∠CAD=∠OAD,即AD平分∠BAC.
(2)连接OE,ED.
∵∠BAC=60°,OE=OA,
∴△OAE为等边三角形,
∴∠AOE=60°,
∴∠ADE=30°.
又∵,
∴∠ADE=∠OAD,
∴ED∥AO,
∴S△AED=S△OED,
∴阴影部分的面积 = S扇形ODE = .
23、(1)y1=80x+4400;y2=64x+4800;(2)当m=20时,w取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低.
【解析】
(1)根据方案即可列出函数关系式;
(2)根据题意建立w与m之间的关系式,再根据一次函数的增减性即可得出答案.
解:(1) 得:;
得:;
(2)
,
因为w是m的一次函数,k=-4<0,
所以w随的增加而减小,m当m=20时,w取得最小值.
即按照方案一购买20件甲种商品;按照方案二购买20件乙种商品.
24、(1)5;(2)O'(,);(3)P'(,).
【解析】
(1)先求出AB.利用旋转判断出△ABB'是等腰直角三角形,即可得出结论;
(2)先判断出∠HAO'=60°,利用含30度角的直角三角形的性质求出AH,OH,即可得出结论;
(3)先确定出直线O'C的解析式,进而确定出点P的坐标,再利用含30度角的直角三角形的性质即可得出结论.
【详解】
解:(1)∵A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,由旋转知,BA=B'A,∠BAB'=90°,∴△ABB'是等腰直角三角形,∴BB'=AB=5;
(2)如图2,过点O'作O'H⊥x轴于H,由旋转知,O'A=OA=3,∠OAO'=120°,∴∠HAO'=60°,∴∠HO'A=30°,∴AH=AO'=,OH=AH=,∴OH=OA+AH=,∴O'();
(3)由旋转知,AP=AP',∴O'P+AP'=O'P+AP.如图3,作A关于y轴的对称点C,连接O'C交y轴于P,∴O'P+AP=O'P+CP=O'C,此时,O'P+AP的值最小.
∵点C与点A关于y轴对称,∴C(﹣3,0).
∵O'(),∴直线O'C的解析式为y=x+,令x=0,∴y=,∴P(0,),∴O'P'=OP=,作P'D⊥O'H于D.
∵∠B'O'A=∠BOA=90°,∠AO'H=30°,∴∠DP'O'=30°,∴O'D=O'P'=,P'D=O'D=,∴DH=O'H﹣O'D=,O'H+P'D=,∴P'().
【点睛】
本题是几何变换综合题,考查了旋转的性质,等腰直角三角形的性质,含30度角的直角三角形的性质,构造出直角三角形是解答本题的关键.
25、(I)4;(II) (III)(2,0)或(0,4)
【解析】
(I)当m=3时,抛物线解析式为y=-x2+6x,解方程-x2+6x=0得A(6,0),利用对称性得到C(5,5),从而得到BC的长;
(II)解方程-x2+2mx=0得A(2m,0),利用对称性得到C(2m-1,2m-1),再根据勾股定理和两点间的距离公式得到(2m-2)2+(m-1)2+12+(2m-1)2=(2m-1)2+m2,然后解方程即可;
(III)如图,利用△PME≌△CBP得到PM=BC=2m-2,ME=BP=m-1,则根据P点坐标得到2m-2=m,解得m=2,再计算出ME=1得到此时E点坐标;作PH⊥y轴于H,如图,利用△PHE′≌△PBC得到PH=PB=m-1,HE′=BC=2m-2,利用P(1,m)得到m-1=1,解得m=2,然后计算出HE′得到E′点坐标.
【详解】
解:(I)当m=3时,抛物线解析式为y=﹣x2+6x,
当y=0时,﹣x2+6x=0,解得x1=0,x2=6,则A(6,0),
抛物线的对称轴为直线x=3,
∵P(1,3),
∴B(1,5),
∵点B关于抛物线对称轴的对称点为C
∴C(5,5),
∴BC=5﹣1=4;
(II)当y=0时,﹣x2+2mx=0,解得x1=0,x2=2m,则A(2m,0),
B(1,2m﹣1),
∵点B关于抛物线对称轴的对称点为C,而抛物线的对称轴为直线x=m,
∴C(2m﹣1,2m﹣1),
∵PC⊥PA,
∴PC2+AC2=PA2,
∴(2m﹣2)2+(m﹣1)2+12+(2m﹣1)2=(2m﹣1)2+m2,
整理得2m2﹣5m+3=0,解得m1=1,m2=,
即m的值为;
(III)如图,
∵PE⊥PC,PE=PC,
∴△PME≌△CBP,
∴PM=BC=2m﹣2,ME=BP=2m﹣1﹣m=m﹣1,
而P(1,m)
∴2m﹣2=m,解得m=2,
∴ME=m﹣1=1,
∴E(2,0);
作PH⊥y轴于H,如图,
易得△PHE′≌△PBC,
∴PH=PB=m﹣1,HE′=BC=2m﹣2,
而P(1,m)
∴m﹣1=1,解得m=2,
∴HE′=2m﹣2=2,
∴E′(0,4);
综上所述,m的值为2,点E的坐标为(2,0)或(0,4).
【点睛】
本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会运用全等三角形的知识解决线段相等的问题;理解坐标与图形性质,记住两点间的距离公式.
26、(1)a=2,k=8(2) =1.
【解析】
分析:(1)把A(-1,a)代入反比例函数得到A(-1,2),过A作AE⊥x轴于E,BF⊥x轴于F,根据相似三角形的性质得到B(4,2),于是得到k=4×2=8;
(2)求的直线AO的解析式为y=-2x,设直线MN的解析式为y=-2x+b,得到直线MN的解析式为y=-2x+10,解方程组得到C(1,8),于是得到结论.
详解:(1)∵反比例函数y=﹣(x<0)的图象过点A(﹣1,a),
∴a=﹣=2,
∴A(﹣1,2),
过A作AE⊥x轴于E,BF⊥⊥x轴于F,
∴AE=2,OE=1,
∵AB∥x轴,
∴BF=2,
∵∠AOB=90°,
∴∠EAO+∠AOE=∠AOE+∠BOF=90°,
∴∠EAO=∠BOF,
∴△AEO∽△OFB,
∴,
∴OF=4,
∴B(4,2),
∴k=4×2=8;
(2)∵直线OA过A(﹣1,2),
∴直线AO的解析式为y=﹣2x,
∵MN∥OA,
∴设直线MN的解析式为y=﹣2x+b,
∴2=﹣2×4+b,
∴b=10,
∴直线MN的解析式为y=﹣2x+10,
∵直线MN交x轴于点M,交y轴于点N,
∴M(5,0),N(0,10),
解得,,
∴C(1,8),
∴△OBC的面积=S△OMN﹣S△OCN﹣S△OBM=5×10﹣×10×1﹣×5×2=1.
点睛:本题考查了一次函数图象上点的坐标特征,反比例函数与一次函数交点问题,相似三角形的判定和性质,求函数的解析式,三角形的面积的计算,正确的作出辅助线是解题的关键.
27、2.
【解析】
根据分式的运算法则进行计算化简,再将x2=x+2代入即可.
【详解】
解:原式=×
=×
=,
∵x2﹣x﹣2=2,
∴x2=x+2,
∴==2.
武汉市青山区2021-2022学年中考数学全真模拟试题含解析: 这是一份武汉市青山区2021-2022学年中考数学全真模拟试题含解析,共21页。试卷主要包含了汽车刹车后行驶的距离s,计算-3-1的结果是等内容,欢迎下载使用。
湖北省武汉市黄陂区重点达标名校2021-2022学年中考数学模拟试题含解析: 这是一份湖北省武汉市黄陂区重点达标名校2021-2022学年中考数学模拟试题含解析,共19页。试卷主要包含了若二次函数的图象经过点等内容,欢迎下载使用。
湖北省武汉市青山区5月重点名校2021-2022学年中考数学模拟预测题含解析: 这是一份湖北省武汉市青山区5月重点名校2021-2022学年中考数学模拟预测题含解析,共21页。试卷主要包含了答题时请按要求用笔,下列运算正确的是等内容,欢迎下载使用。