湖南省长沙市青竹湖湘一外国语校2021-2022学年中考数学考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.计算1+2+22+23+…+22010的结果是( )
A.22011–1 B.22011+1
C. D.
2.下列图形中,阴影部分面积最大的是
A. B. C. D.
3.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于( )
A.30° B.50° C.40° D.70°
4.如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM=( )
A. B.1 C. D.
5.如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为( )
A.50° B.55° C.60° D.65°
6.在数轴上表示不等式2(1﹣x)<4的解集,正确的是( )
A. B.
C. D.
7.如图,△ABC是⊙O的内接三角形,∠BOC=120°,则∠A等于( )
A.50° B.60° C.55° D.65°
8.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( )
A. B. C. D.
9.如图,在平面直角坐标系xOy中,A(2,0),B(0,2),⊙C的圆心为点C(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于E点,则△ABE面积的最小值是( )
A.2 B. C. D.
10.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD的面积为()
A.30 B.27 C.14 D.32
二、填空题(本大题共6个小题,每小题3分,共18分)
11.计算的结果是__________.
12.已知二次函数的部分图象如图所示,则______;当x______时,y随x的增大而减小.
13.因式分解:(a+1)(a﹣1)﹣2a+2=_____.
14.圆锥底面圆的半径为3,高为4,它的侧面积等于_____(结果保留π).
15.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是_____.
16.已知∠=32°,则∠的余角是_____°.
三、解答题(共8题,共72分)
17.(8分)如图,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,点M为边BC上一动点,联结AM并延长交射线DC于点F,作∠FAE=45°交射线BC于点E、交边DCN于点N,联结EF.
(1)当CM:CB=1:4时,求CF的长.
(2)设CM=x,CE=y,求y关于x的函数关系式,并写出定义域.
(3)当△ABM∽△EFN时,求CM的长.
18.(8分)为提高城市清雪能力,某区增加了机械清雪设备,现在平均每天比原来多清雪300立方米,现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同,求现在平均每天清雪量.
19.(8分)如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.
(1)通过计算,判断AD2与AC•CD的大小关系;
(2)求∠ABD的度数.
20.(8分)在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/下降到12月份的11340元/.求11、12两月份平均每月降价的百分率是多少?如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/?请说明理由
21.(8分)如图1,图2分别是某款篮球架的实物图与示意图,已知底座BC=1.5米,底座BC与支架AC所成的角∠ACB=60°,支架AF的长为2.50米,篮板顶端F点到篮筐D的距离FD=1.3米,篮板底部支架HE与支架AF所成的角∠FHE=45°,求篮筐D到地面的距离.(精确到0.01米参考数据:≈1.73,≈1.41)
22.(10分)某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子.
若该工厂准备用不超过10000元的资金去购买A,B两种型号板材,并全部制作竖式箱子,已知A型板材每张30元,B型板材每张90元,求最多可以制作竖式箱子多少只?
若该工厂仓库里现有A型板材65张、B型板材110张,用这批板材制作两种类型的箱子,问制作竖式和横式两种箱子各多少只,恰好将库存的板材用完?
若该工厂新购得65张规格为的C型正方形板材,将其全部切割成A型或B型板材不计损耗,用切割成的板材制作两种类型的箱子,要求竖式箱子不少于20只,且材料恰好用完,则能制作两种箱子共______只
23.(12分)已知是的函数,自变量的取值范围是的全体实数,如表是与的几组对应值.
小华根据学习函数的经验,利用上述表格所反映出的与之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:
(1)从表格中读出,当自变量是﹣2时,函数值是 ;
(2)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(3)在画出的函数图象上标出时所对应的点,并写出 .
(4)结合函数的图象,写出该函数的一条性质: .
24.问题探究
(1)如图1,△ABC和△DEC均为等腰直角三角形,且∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,连接AD、BE,求的值;
(2)如图2,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4,过点A作AM⊥AB,点P是射线AM上一动点,连接CP,做CQ⊥CP交线段AB于点Q,连接PQ,求PQ的最小值;
(3)李师傅准备加工一个四边形零件,如图3,这个零件的示意图为四边形ABCD,要求BC=4cm,∠BAD=135°,∠ADC=90°,AD=CD,请你帮李师傅求出这个零件的对角线BD的最大值.
图3
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
可设其和为S,则2S=2+22+23+24+…+22010+22011,两式相减可得答案.
【详解】
设S=1+2+22+23+…+22010①
则2S=2+22+23+…+22010+22011②
②-①得S=22011-1.
故选A.
【点睛】
本题考查了因式分解的应用;设出和为S,并求出2S进行做差求解是解题关键.
2、C
【解析】
分别根据反比例函数系数k的几何意义以及三角形面积求法以及梯形面积求法得出即可:
【详解】
A、根据反比例函数系数k的几何意义,阴影部分面积和为:xy=1.
B、根据反比例函数系数k的几何意义,阴影部分面积和为:.
C、如图,过点M作MA⊥x轴于点A,过点N作NB⊥x轴于点B,
根据反比例函数系数k的几何意义,S△OAM=S△OAM=,从而阴影部分面积和为梯形MABN的面积:.
D、根据M,N点的坐标以及三角形面积求法得出,阴影部分面积为:.
综上所述,阴影部分面积最大的是C.故选C.
3、A
【解析】
利用三角形内角和求∠B,然后根据相似三角形的性质求解.
【详解】
解:根据三角形内角和定理可得:∠B=30°,
根据相似三角形的性质可得:∠B′=∠B=30°.
故选:A.
【点睛】
本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.
4、D
【解析】
由旋转的性质得到AB=BE,根据菱形的性质得到AE=AB,推出△ABE是等边三角形,得到AB=3,AD=,根据三角函数的定义得到∠BAC=30°,求得AC⊥BE,推出C在对角线AH上,得到A,C,H共线,于是得到结论.
【详解】
如图,连接AC交BE于点O,
∵将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,
∴AB=BE,
∵四边形AEHB为菱形,
∴AE=AB,
∴AB=AE=BE,
∴△ABE是等边三角形,
∵AB=3,AD=,
∴tan∠CAB=,
∴∠BAC=30°,
∴AC⊥BE,
∴C在对角线AH上,
∴A,C,H共线,
∴AO=OH=AB=,
∵OC=BC=,
∵∠COB=∠OBG=∠G=90°,
∴四边形OBGM是矩形,
∴OM=BG=BC=,
∴HM=OH﹣OM=,
故选D.
【点睛】
本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键.
5、D
【解析】
试题分析:连接OC,根据平行可得:∠ODC=∠AOD=50°,则∠DOC=80°,则∠AOC=130°,根据同弧所对的圆周角等于圆心角度数的一半可得:∠B=130°÷2=65°.
考点:圆的基本性质
6、A
【解析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1– x)<4
去括号得:2﹣2x<4
移项得:2x>﹣2,
系数化为1得:x>﹣1,
故选A.
“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
7、B
【解析】
由圆周角定理即可解答.
【详解】
∵△ABC是⊙O的内接三角形,
∴∠A= ∠BOC,
而∠BOC=120°,
∴∠A=60°.
故选B.
【点睛】
本题考查了圆周角定理,熟练运用圆周角定理是解决问题的关键.
8、D
【解析】
先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.
【详解】
随机掷一枚均匀的硬币两次,落地后情况如下:
至少有一次正面朝上的概率是,
故选:D.
【点睛】
本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
9、C
【解析】
当⊙C与AD相切时,△ABE面积最大,
连接CD,
则∠CDA=90°,
∵A(2,0),B(0,2),⊙C的圆心为点C(-1,0),半径为1,
∴CD=1,AC=2+1=3,
∴AD==2,
∵∠AOE=∠ADC=90°,∠EAO=∠CAD,
∴△AOE∽△ADC,
∴
即,∴OE=,
∴BE=OB+OE=2+
∴S△ABE=
BE?OA=×(2+)×2=2+
故答案为C.
10、A
【解析】
∵四边形ABCD是平行四边形,
∴AB//CD,AB=CD,AD//BC,
∴△BEF∽△CDF,△BEF∽△AED,
∴ ,
∵BE:AB=2:3,AE=AB+BE,
∴BE:CD=2:3,BE:AE=2:5,
∴ ,
∵S△BEF=4,
∴S△CDF=9,S△AED=25,
∴S四边形ABFD=S△AED-S△BEF=25-4=21,
∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,
故选A.
【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
分析:利用同分母分式的减法法则计算,分子整理后分解因式,约分即可得到结果.
详解:原式
故答案为:1.
点睛:本题考查了分式的加减运算,分式的加减运算关键是通分,通分的关键是找最简公分母.
12、3, >1
【解析】
根据函数图象与x轴的交点,可求出c的值,根据图象可判断函数的增减性.
【详解】
解:因为二次函数的图象过点.
所以,
解得.
由图象可知:时,y随x的增大而减小.
故答案为(1). 3, (2). >1
【点睛】
此题考查二次函数图象的性质,数形结合法是解决函数问题经常采用的一种方法,关键是要找出图象与函数解析式之间的联系.
13、(a﹣1)1.
【解析】
提取公因式(a−1),进而分解因式得出答案.
【详解】
解:(a+1)(a﹣1)﹣1a+1
=(a+1)(a﹣1)﹣1(a﹣1)
=(a﹣1)(a+1﹣1)
=(a﹣1)1.
故答案为:(a﹣1)1.
【点睛】
此题主要考查了提取公因式法分解因式,找出公因式是解题关键.
14、15π
【解析】
根据圆的面积公式、扇形的面积公式计算即可.
【详解】
圆锥的母线长==5,,
圆锥底面圆的面积=9π
圆锥底面圆的周长=2×π×3=6π,即扇形的弧长为6π,
∴圆锥的侧面展开图的面积=×6π×5=15π,
【点睛】
本题考查的是扇形的面积,熟练掌握扇形和圆的面积公式是解题的关键.
15、(673,0)
【解析】
由P3、P6、P9 可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,据此可解.
【详解】
解:由P3、P6、P9 可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,
∵2019÷3=673,
∴P2019 (673,0)
则点P2019的坐标是 (673,0).
故答案为 (673,0).
【点睛】
本题属于平面直角坐标系中找点的规律问题,找到某种循环规律之后,可以得解.本题难度中等偏上.
16、58°
【解析】
根据余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角可得答案.
【详解】
解:∠α的余角是:90°-32°=58°.
故答案为58°.
【点睛】
本题考查余角,解题关键是掌握互为余角的两个角的和为90度.
三、解答题(共8题,共72分)
17、 (1) CF=1;(2)y=,0≤x≤1;(3)CM=2﹣.
【解析】
(1)如图1中,作AH⊥BC于H.首先证明四边形AHCD是正方形,求出BC、MC的长,利用平行线分线段成比例定理即可解决问题;
(2)在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,由△EAM∽△EBA,可得,推出AE2=EM•EB,由此构建函数关系式即可解决问题;
(3)如图2中,作AH⊥BC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG.想办法证明CM=CN,MN=DN+HM即可解决问题;
【详解】
解:(1)如图1中,作AH⊥BC于H.
∵CD⊥BC,AD∥BC,
∴∠BCD=∠D=∠AHC=90°,
∴四边形AHCD是矩形,
∵AD=DC=1,
∴四边形AHCD是正方形,
∴AH=CH=CD=1,
∵∠B=45°,
∴AH=BH=1,BC=2,
∵CM=BC=,CM∥AD,
∴=,
∴=,
∴CF=1.
(2)如图1中,在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,
∵∠AEM=∠AEB,∠EAM=∠B,
∴△EAM∽△EBA,
∴=,
∴AE2=EM•EB,
∴1+(1+y)2=(x+y)(y+2),
∴y=,
∵2﹣2x≥0,
∴0≤x≤1.
(3)如图2中,作AH⊥BC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG.
则△ADN≌△AHG,△MAN≌△MAG,
∴MN=MG=HM+GH=HM+DN,
∵△ABM∽△EFN,
∴∠EFN=∠B=45°,
∴CF=CE,
∵四边形AHCD是正方形,
∴CH=CD=AH=AD,EH=DF,∠AHE=∠D=90°,
∴△AHE≌△ADF,
∴∠AEH=∠AFD,
∵∠AEH=∠DAN,∠AFD=∠HAM,
∴∠HAM=∠DAN,
∴△ADN≌△AHM,
∴DN=HM,设DN=HM=x,则MN=2x,CN=CM=x,
∴x+x=1,
∴x=﹣1,
∴CM=2﹣.
【点睛】
本题考查了正方形的判定与性质,平行线分线段成比例定理,勾股定理,相似三角形的判定与性质,全等三角形的判定与性质.熟练运用平行线分线段成比例定理是解(1)的关键;证明△EAM∽△EBA是解(2)的关键;综合运用全等三角形的判定与性质是解(3)的关键.
18、现在平均每天清雪量为1立方米.
【解析】
分析:设现在平均每天清雪量为x立方米,根据等量关系“现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同”列分式方程求解.
详解:设现在平均每天清雪量为x立方米,
由题意,得
解得 x=1.
经检验x=1是原方程的解,并符合题意.
答:现在平均每天清雪量为1立方米.
点睛:此题主要考查了分式方程的应用,关键是确定问题的等量关系,注意解分式方程的时候要进行检验.
19、(1)AD2=AC•CD.(2)36°.
【解析】
试题分析:(1)通过计算得到=,再计算AC·CD,比较即可得到结论;
(2)由,得到,即,从而得到△ABC∽△BDC,故有,从而得到BD=BC=AD,故∠A=∠ABD,∠ABC=∠C=∠BDC.
设∠A=∠ABD=x,则∠BDC=2x,∠ABC=∠C=∠BDC=2x,由三角形内角和等于180°,解得:x=36°,从而得到结论.
试题解析:(1)∵AD=BC=,∴==.
∵AC=1,∴CD==,∴;
(2)∵,∴,即,又∵∠C=∠C,∴△ABC∽△BDC,∴,又∵AB=AC,∴BD=BC=AD,∴∠A=∠ABD,∠ABC=∠C=∠BDC.
设∠A=∠ABD=x,则∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.
考点:相似三角形的判定与性质.
20、(1)10%;(1)会跌破10000元/m1.
【解析】
(1)设11、11两月平均每月降价的百分率是x,那么4月份的房价为14000(1-x),11月份的房价为14000(1-x)1,然后根据11月份的11340元/m1即可列出方程解决问题;
(1)根据(1)的结果可以计算出今年1月份商品房成交均价,然后和10000元/m1进行比较即可作出判断.
【详解】
(1)设11、11两月平均每月降价的百分率是x,
则11月份的成交价是:14000(1-x),
11月份的成交价是:14000(1-x)1,
∴14000(1-x)1=11340,
∴(1-x)1=0.81,
∴x1=0.1=10%,x1=1.9(不合题意,舍去)
答:11、11两月平均每月降价的百分率是10%;
(1)会跌破10000元/m1.
如果按此降价的百分率继续回落,估计今年1月份该市的商品房成交均价为:
11340(1-x)1=11340×0.81=9184.5<10000,
由此可知今年1月份该市的商品房成交均价会跌破10000元/m1.
【点睛】
此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.
21、3.05米
【解析】
延长FE交CB的延长线于M, 过A作AG⊥FM于G, 解直角三角形即可得到正确结论.
【详解】
解:
如图:延长FE交CB的延长线于M,过A作AG⊥FM于G,
在Rt△ABC中,tan∠ACB=,
∴AB=BC•tan60°=1.5×1.73=2.595,
∴GM=AB=2.595,
在Rt△AGF中,∵∠FAG=∠FHE=45°,sin∠FAG=,
∴sin45°=,
∴FG=1.76,
∴DM=FG+GM﹣DF≈3.05米.
答:篮框D到地面的距离是3.05米.
【点睛】
本题主要考查直角三角形和三角函数,构造合适的辅助线是本题解题的关键.
22、(1)最多可以做25只竖式箱子;(2)能制作竖式、横式两种无盖箱子分别为5只和30只;(3)47或1.
【解析】
表示出竖式箱子所用板材数量进而得出总金额即可得出答案;设制作竖式箱子a只,横式箱子b只,利用A型板材65张、B型板材110张,得出方程组求出答案;设裁剪出B型板材m张,则可裁A型板材张,进而得出方程组求出符合题意的答案.
【详解】
解:设最多可制作竖式箱子x只,则A型板材x张,B型板材4x张,根据题意得
解得.
答:最多可以做25只竖式箱子.
设制作竖式箱子a只,横式箱子b只,根据题意,
得,
解得:.
答:能制作竖式、横式两种无盖箱子分别为5只和30只.
设裁剪出B型板材m张,则可裁A型板材张,由题意得:
,
整理得,,.
竖式箱子不少于20只,
或22,这时,或,.
则能制作两种箱子共:或.
故答案为47或1.
【点睛】
本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是理解题意,列出等式.
23、(1);(2)见解析;(3);(4)当时,随的增大而减小.
【解析】
(1)根据表中,的对应值即可得到结论;
(2)按照自变量由小到大,利用平滑的曲线连结各点即可;
(3)在所画的函数图象上找出自变量为7所对应的函数值即可;
(4)利用函数图象的图象求解.
【详解】
解:(1)当自变量是﹣2时,函数值是;
故答案为:.
(2)该函数的图象如图所示;
(3)当时所对应的点 如图所示,
且;
故答案为:;
(4)函数的性质:当时,随的增大而减小.
故答案为:当时,随的增大而减小.
【点睛】
本题考查了函数值,函数的定义:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.
24、(1);(2);(3)+.
【解析】
(1)由等腰直角三角形的性质可得BC=3,CE=,∠ACB=∠DCE=45°,可证△ACD∽△BCE,可得=;
(2)由题意可证点A,点Q,点C,点P四点共圆,可得∠QAC=∠QPC,可证△ABC∽△PQC,可得,可得当QC⊥AB时,PQ的值最小,即可求PQ的最小值;
(3)作∠DCE=∠ACB,交射线DA于点E,取CE中点F,连接AC,BE,DF,BF,由题意可证△ABC∽△DEC,可得,且∠BCE=∠ACD,可证△BCE∽△ACD,可得∠BEC=∠ADC=90°,由勾股定理可求CE,DF,BF的长,由三角形三边关系可求BD的最大值.
【详解】
(1)∵∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,
∴BC=3,CE=,∠ACB=∠DCE=45°,
∴∠BCE=∠ACD,
∵==,=,
∴=,∠BCE=∠ACD,
∴△ACD∽△BCE,
∴=;
(2)∵∠ACB=90°,∠B=30°,BC=4,
∴AC=,AB=2AC=,
∵∠QAP=∠QCP=90°,
∴点A,点Q,点C,点P四点共圆,
∴∠QAC=∠QPC,且∠ACB=∠QCP=90°,
∴△ABC∽△PQC,
∴,
∴PQ=×QC=QC,
∴当QC的长度最小时,PQ的长度最小,
即当QC⊥AB时,PQ的值最小,
此时QC=2,PQ的最小值为;
(3)如图,作∠DCE=∠ACB,交射线DA于点E,取CE中点F,连接AC,BE,DF,BF,
,
∵∠ADC=90°,AD=CD,
∴∠CAD=45°,∠BAC=∠BAD-∠CAD=90°,
∴△ABC∽△DEC,
∴,
∵∠DCE=∠ACB,
∴∠BCE=∠ACD,
∴△BCE∽△ACD,
∴∠BEC=∠ADC=90°,
∴CE=BC=2,
∵点F是EC中点,
∴DF=EF=CE=,
∴BF==,
∴BD≤DF+BF=+
【点睛】
本题是相似综合题,考查了等腰直角三角形的性质,勾股定理,相似三角形的判定和性质等知识,添加恰当辅助线构造相似三角形是本题的关键.
2023年湖南省长沙市开福区青竹湖湘一外国语学校中考模拟数学试题(解析版): 这是一份2023年湖南省长沙市开福区青竹湖湘一外国语学校中考模拟数学试题(解析版),共26页。试卷主要包含了 若与a互为相反数,则, 下列计算正确的是., 如果 ,那么下列不等式成立是等内容,欢迎下载使用。
2023年湖南省长沙市开福区青竹湖湘一外国语学校中考模拟数学试题(解析版): 这是一份2023年湖南省长沙市开福区青竹湖湘一外国语学校中考模拟数学试题(解析版),共26页。试卷主要包含了 若与a互为相反数,则, 下列计算正确的是., 如果 ,那么下列不等式成立是等内容,欢迎下载使用。
2023年湖南省长沙市青竹湖湘一外国语学校中考三模数学试题(含解析): 这是一份2023年湖南省长沙市青竹湖湘一外国语学校中考三模数学试题(含解析),共24页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。