


广西河池市环江县市级名校2021-2022学年中考数学考前最后一卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列运算正确的是( )
A.a6÷a3=a2 B.3a2•2a=6a3 C.(3a)2=3a2 D.2x2﹣x2=1
2.若分式有意义,则a的取值范围为( )
A.a≠4 B.a>4 C.a<4 D.a=4
3.某学校举行一场知识竞赛活动,竞赛共有4小题,每小题5分,答对给5分,答错或不答给0分,在该学校随机抽取若干同学参加比赛,成绩被制成不完整的统计表如下.
成绩 | 人数(频数) | 百分比(频率) |
0 |
|
|
5 |
| 0.2 |
10 | 5 |
|
15 |
| 0.4 |
20 | 5 | 0.1 |
根据表中已有的信息,下列结论正确的是( )
A.共有40名同学参加知识竞赛
B.抽到的同学参加知识竞赛的平均成绩为10分
C.已知该校共有800名学生,若都参加竞赛,得0分的估计有100人
D.抽到同学参加知识竞赛成绩的中位数为15分
4.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有匹,小马有匹,则可列方程组为( )
A. B.
C. D.
5.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为( )
A.60 n mile B.60 n mile C.30 n mile D.30 n mile
6.两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是1:p,而在另一个瓶子中是1:q,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是( )
A. B. C. D.
7.已知一个多边形的内角和是1080°,则这个多边形是( )
A.五边形 B.六边形 C.七边形 D.八边形
8.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为( )
A. B.
C. D.
9.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,它们离甲地的路程y(km)与客车行驶时间x(h)间的函数关系如图,下列信息:
(1)出租车的速度为100千米/时;
(2)客车的速度为60千米/时;
(3)两车相遇时,客车行驶了3.75小时;
(4)相遇时,出租车离甲地的路程为225千米.
其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
10.下列四个几何体,正视图与其它三个不同的几何体是( )
A. B.
C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.函数y=中,自变量x的取值范围是_________.
12.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为 .
13.如图为二次函数图象的一部分,其对称轴为直线.若其与x轴一交点为A(3,0)则由图象可知,不等式的解集是_______.
14.如图AB是直径,C、D、E为圆周上的点,则______.
15.已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于______.
16.实数,﹣3,,,0中的无理数是_____.
17.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.
三、解答题(共7小题,满分69分)
18.(10分)如图,在中,,,点D是BC上任意一点,将线段AD绕点A逆时针方向旋转,得到线段AE,连结EC.
依题意补全图形;
求的度数;
若,,将射线DA绕点D顺时针旋转交EC的延长线于点F,请写出求AF长的思路.
19.(5分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.
扇形统计图中九年级参赛作文篇数对应的圆心角是 度,并补全条形统计图;经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.
20.(8分)解方程: +=1.
21.(10分)(1)(问题发现)小明遇到这样一个问题:
如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.
(1)小明发现,过点D作DF//AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系: ;
(2)(类比探究)如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件
不变),试猜想AD与DE之间的数量关系,并证明你的结论.
(3)(拓展应用)当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,
请直接写出△ABC与△ADE的面积之比.
22.(10分)先化简,再求值:2(m﹣1)2+3(2m+1),其中m是方程2x2+2x﹣1=0的根
23.(12分)在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如图所示的两幅不完整的统计图:
求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
24.(14分)先化简,再求值:,其中x是从-1、0、1、2中选取一个合适的数.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
A、根据同底数幂的除法法则计算;
B、根据同底数幂的乘法法则计算;
C、根据积的乘方法则进行计算;
D、根据合并同类项法则进行计算.
【详解】
解:A、a6÷a3=a3,故原题错误;
B、3a2•2a=6a3,故原题正确;
C、(3a)2=9a2,故原题错误;
D、2x2﹣x2=x2,故原题错误;
故选B.
【点睛】
考查同底数幂的除法,合并同类项,同底数幂的乘法,积的乘方,熟记它们的运算法则是解题的关键.
2、A
【解析】
分式有意义时,分母a-4≠0
【详解】
依题意得:a−4≠0,
解得a≠4.
故选:A
【点睛】
此题考查分式有意义的条件,难度不大
3、B
【解析】
根据频数÷频率=总数可求出参加人数,根据分别求出5分、15分、0分的人数,即可求出平均分,根据0分的频率即可求出800人中0分的人数,根据中位数的定义求出中位数,对选项进行判断即可.
【详解】
∵5÷0.1=50(名),有50名同学参加知识竞赛,故选项A错误;
∵成绩5分、15分、0分的同学分别有:50×0.2=10(名),50×0.4=20(名),50﹣10﹣5﹣20﹣5=10(名)
∴抽到的同学参加知识竞赛的平均成绩为:=10,故选项B正确;
∵0分同学10人,其频率为0.2,
∴800名学生,得0分的估计有800×0.2=160(人),故选项C错误;
∵第25、26名同学的成绩为10分、15分,
∴抽到同学参加知识竞赛成绩的中位数为12.5分,故选项D错误.
故选:B.
【点睛】
本题考查利用频率估算概率,平均数及中位数的定义,熟练掌握相关知识是解题关键.
4、B
【解析】
设大马有匹,小马有匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可.
【详解】
解:设大马有匹,小马有匹,由题意得:
,
故选:B.
【点睛】
本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.
5、B
【解析】
如图,作PE⊥AB于E.
在Rt△PAE中,∵∠PAE=45°,PA=60n mile,
∴PE=AE=×60=n mile,
在Rt△PBE中,∵∠B=30°,
∴PB=2PE=n mile.
故选B.
6、C
【解析】
混合液中的酒精与水的容积之比为两瓶中的纯酒精与两瓶中的水之比,分别算出纯酒精和水的体积即可得答案.
【详解】
设瓶子的容积即酒精与水的和是1,
则纯酒精之和为:1×+1×=+,
水之和为:+,
∴混合液中的酒精与水的容积之比为:(+)÷(+)=,
故选C.
【点睛】
本题主要考查分式的混合运算,找到相应的等量关系是解决本题的关键.
7、D
【解析】
根据多边形的内角和=(n﹣2)•180°,列方程可求解.
【详解】
设所求多边形边数为n,
∴(n﹣2)•180°=1080°,
解得n=8.
故选D.
【点睛】
本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.
8、C
【解析】
根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,
即可得出a、b之间的关系式.
【详解】
∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,
∴2014年我省财政收入为a(1+8.9%)亿元,
∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,
∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);
故选C.
【点睛】
此题考查了列代数式,关键是根据题意求出2014年我省财政的收入,是一道基础题.
9、D
【解析】
根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题.
【详解】
由图象可得,
出租车的速度为:600÷6=100千米/时,故(1)正确,
客车的速度为:600÷10=60千米/时,故(2)正确,
两车相遇时,客车行驶时间为:600÷(100+60)=3.75(小时),故(3)正确,
相遇时,出租车离甲地的路程为:60×3.75=225千米,故(4)正确,
故选D.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.
10、C
【解析】
根据几何体的三视图画法先画出物体的正视图再解答.
【详解】
解:A、B、D三个几何体的主视图是由左上一个正方形、下方两个正方形构成的,
而C选项的几何体是由上方2个正方形、下方2个正方形构成的,
故选:C.
【点睛】
此题重点考查学生对几何体三视图的理解,掌握几何体的主视图是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、x≤1且x≠﹣1
【解析】
由二次根式中被开方数为非负数且分母不等于零求解可得结论.
【详解】
根据题意,得:,解得:x≤1且x≠﹣1.
故答案为x≤1且x≠﹣1.
【点睛】
本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(1)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
12、-6
【解析】
分析:∵菱形的两条对角线的长分别是6和4,
∴A(﹣3,2).
∵点A在反比例函数的图象上,
∴,解得k=-6.
【详解】
请在此输入详解!
13、﹣1<x<1
【解析】
试题分析:由图象得:对称轴是x=1,其中一个点的坐标为(1,0)
∴图象与x轴的另一个交点坐标为(-1,0)
利用图象可知:
ax2+bx+c<0的解集即是y<0的解集,
∴-1<x<1.
考点:二次函数与不等式(组).
14、90°
【解析】
连接OE,根据圆周角定理即可求出答案.
【详解】
解:连接OE,
根据圆周角定理可知:
∠C=∠AOE,∠D=∠BOE,
则∠C+∠D=(∠AOE+∠BOE)=90°,
故答案为:90°.
【点睛】
本题主要考查了圆周角定理,解题要掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
15、
【解析】
试题分析:如图,过点C作CF⊥AD交AD的延长线于点F,可得BE∥CF,易证△BGD≌△CFD,所以GD=DF,BG=CF;又因BE是△ABC的角平分线且AD⊥BE,BG是公共边,可证得△ABG≌△DBG,所以AG=GD=3;由BE∥CF可得△AGE∽△AFC,所以,即FC=3GE;又因BE=BG+GE=3GE+GE=4GE=6,所以GE=,BG=;在Rt△AFC中,AF=AG+GD+GF=9,CF=BG=,由勾股定理可求得AC=.
考点:全等三角形的判定及性质;相似三角形的判定及性质;勾股定理.
16、
【解析】
无理数包括三方面的数:①含π的,②一些开方开不尽的根式,③一些有规律的数,根据以上内容判断即可.
【详解】
解:=4,是有理数,﹣3、、0都是有理数,
是无理数.
故答案为:.
【点睛】
本题考查了对无理数的定义的理解和运用,注意:无理数是指无限不循环小数,包括三方面的数:①含π的,②一些开方开不尽的根式,③一些有规律的数.
17、20 cm.
【解析】
将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.
【详解】
解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.
根据勾股定理,得(cm).
故答案为:20cm.
【点睛】
本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.
三、解答题(共7小题,满分69分)
18、(1)见解析;(2)90°;(3)解题思路见解析.
【解析】
(1)将线段AD绕点A逆时针方向旋转90°,得到线段AE,连结EC.
(2)先判定△ABD≌△ACE,即可得到,再根据,即可得出;
(3)连接DE,由于△ADE为等腰直角三角形,所以可求;由, ,可求的度数和的度数,从而可知DF的长;过点A作于点H,在Rt△ADH中,由,AD=1可求AH、DH的长;由DF、DH的长可求HF的长;在Rt△AHF中,由AH和HF,利用勾股定理可求AF的长.
【详解】
解:如图,
线段AD绕点A逆时针方向旋转,得到线段AE.
,,
.
,
.
,
在和中
,
≌.
,
中,,,
.
;
Ⅰ连接DE,由于为等腰直角三角形,所以可求;
Ⅱ由,,可求的度数和的度数,从而可知DF的长;
Ⅲ过点A作于点H,在中,由,可求AH、DH的长;
Ⅳ由DF、DH的长可求HF的长;
Ⅴ在中,由AH和HF,利用勾股定理可求AF的长.
故答案为(1)见解析;(2)90°;(3)解题思路见解析.
【点睛】
本题主要考查旋转的性质,等腰直角三角形的性质的运用,解题的关键是要注意对应点与旋转中心所连线段的夹角等于旋转角.
19、【解析】
试题分析:(1)求出总的作文篇数,即可得出九年级参赛作文篇数对应的圆心角的度数,求出八年级的作文篇数,补全条形统计图即可;
(2)设四篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文,用画树状法即可求得结果.
试题解析:(1)20÷20%=100,
九年级参赛作文篇数对应的圆心角=360°×=126°;
100﹣20﹣35=45,
补全条形统计图如图所示:
(2)假设4篇荣获特等奖的作文分别为A、B、C、D,
其中A代表七年级获奖的特等奖作文.
画树状图法:
共有12种可能的结果,七年级特等奖作文被选登在校刊上的结果有6种,
∴P(七年级特等奖作文被选登在校刊上)= .
考点:1.条形统计图;2.扇形统计图;3.列表法与画树状图法.
20、-3
【解析】
试题分析:解得x=-3
经检验: x=-3是原方程的根.
∴原方程的根是x=-3
考点:解一元一次方程
点评:在中考中比较常见,在各种题型中均有出现,一般难度不大,要熟练掌握.
21、(1)AD=DE;(2)AD=DE,证明见解析;(3).
【解析】
试题分析:本题难度中等.主要考查学生对探究例子中的信息进行归纳总结.并能够结合三角形的性质是解题关键.
试题解析:(10分)
(1)AD=DE.
(2)AD=DE.
证明:如图2,过点D作DF//AC,交AC于点F,
∵△ABC是等边三角形,
∴AB=BC,∠B=∠ACB=∠ABC=60°.
又∵DF//AC,
∴∠BDF=∠BFD=60°
∴△BDF是等边三角形,BF=BD,∠BFD=60°,
∴AF=CD,∠AFD=120°.
∵EC是外角的平分线,
∠DCE=120°=∠AFD.
∵∠ADC是△ABD的外角,
∴∠ADC=∠B+∠FAD=60°+∠FAD.
∵∠ADC=∠ADE+∠EDC=60°+∠EDC,
∴∠FAD=∠EDC.
∴△AFD≌△DCE(ASA),
∴AD=DE;
(3).
考点:1.等边三角形探究题;2.全等三角形的判定与性质;3.等边三角形的判定与性质.
22、2m2+2m+5;1;
【解析】
先利用完全平方公式化简,再去括号合并得到最简结果,把已知等式变形后代入值计算即可.
【详解】
解:原式=2(m2﹣2m+1)+1m+3,
=2m2﹣4m+2+1m+3=2m2+2m+5,
∵m是方程2x2+2x﹣1=0的根,
∴2m2+2m﹣1=0,即2m2+2m=1,
∴原式=2m2+2m+5=1.
【点睛】
此题考查了整式的化简求值以及方程的解,利用整体代换思想可使运算更简单.
23、(1)3,补图详见解析;(2)
【解析】
(1)总人数=3÷它所占全体团员的百分比;发4条的人数=总人数-其余人数
(2)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可
【详解】
由扇形图可以看到发箴言三条的有3名学生且占,
故该班团员人数为:
(人),
则发4条箴言的人数为:(人),
所以本月该班团员所发的箴言共(条),则平均所发箴言的条数是:(条).
(2)画树形图如下:
由树形图可得,所选两位同学恰好是一位男同学和一位女同学的概率为.
【点睛】
此题考查扇形统计图,条形统计图,列表法与树状图法和扇形统计图,看懂图中数据是解题关键
24、.
【解析】
先把分子分母因式分解,约分后进行通分化为同分母,再进行同分母的加法运算,然后再约分得到原式=,由于x不能取±1,2,所以把x=0代入计算即可.
【详解】
,
=
=
=
=,
当x=0时,原式=.
宁波市鄞州区市级名校2021-2022学年中考数学考前最后一卷含解析: 这是一份宁波市鄞州区市级名校2021-2022学年中考数学考前最后一卷含解析,共20页。
2022年广西河池市环江县中考数学猜题卷含解析: 这是一份2022年广西河池市环江县中考数学猜题卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,汽车刹车后行驶的距离s等内容,欢迎下载使用。
2022届安徽合肥市市级名校中考数学考前最后一卷含解析: 这是一份2022届安徽合肥市市级名校中考数学考前最后一卷含解析,共19页。试卷主要包含了关于x的方程等内容,欢迎下载使用。