![广西南宁市江南区三十四中学2021-2022学年中考数学最后冲刺模拟试卷含解析01](http://www.enxinlong.com/img-preview/2/3/13128345/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广西南宁市江南区三十四中学2021-2022学年中考数学最后冲刺模拟试卷含解析02](http://www.enxinlong.com/img-preview/2/3/13128345/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广西南宁市江南区三十四中学2021-2022学年中考数学最后冲刺模拟试卷含解析03](http://www.enxinlong.com/img-preview/2/3/13128345/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
广西南宁市江南区三十四中学2021-2022学年中考数学最后冲刺模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是( )
A.60° B.45° C.15° D.90°
2.化简的结果是( )
A. B. C. D.
3.计算(ab2)3的结果是( )
A.ab5 B.ab6 C.a3b5 D.a3b6
4.数据4,8,4,6,3的众数和平均数分别是( )
A.5,4 B.8,5 C.6,5 D.4,5
5.下列图形中,不是轴对称图形的是( )
A. B. C. D.
6.7的相反数是( )
A.7 B.-7 C. D.-
7.如图,四边形ABCD内接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,则∠BDC的度数为( )
A.100° B.105° C.110° D.115°
8.﹣的相反数是( )
A.8 B.﹣8 C. D.﹣
9.如图,I是∆ABC的内心,AI向延长线和△ABC的外接圆相交于点D,连接BI,BD,DC下列说法中错误的一项是( )
A.线段DB绕点D顺时针旋转一定能与线段DC重合
B.线段DB绕点D顺时针旋转一定能与线段DI熏合
C.∠CAD绕点A顺时针旋转一定能与∠DAB重合
D.线段ID绕点I顺时针旋转一定能与线段IB重合
10.有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的( )
A.平均数 B.中位数 C.众数 D.方差
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在△ABC中,∠C=30°,∠A﹣∠B=30°,则∠A=_____.
12.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快50千米,提速后从北京到上海运行时间缩短了30分钟.已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为__.
13.如图,在平面直角坐标系xOy中,点A的坐标为A(1,0),等腰直角三角形ABC的边AB在x轴的正半轴上,∠ABC=90°,点B在点A的右侧,点C在第一象限。将△ABC绕点A逆时针旋转75°,如果点C的对应点E恰好落在y轴的正半轴上,那么边AB的长为____.
14.如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都等可能的随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么,蚂蚁从A出发到达E处的概率是_____.
15.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是 .
16.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是 .
三、解答题(共8题,共72分)
17.(8分)计算: .
18.(8分)某数学兴趣小组为测量如图(①所示的一段古城墙的高度,设计用平面镜测量的示意图如图②所示,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处.
已知AB⊥BD、CD⊥BD,且测得AB=1.2m,BP=1.8m.PD=12m,求该城墙的高度(平面镜的原度忽略不计): 请你设计一个测量这段古城墙高度的方案.
要求:①面出示意图(不要求写画法);②写出方案,给出简要的计算过程:③给出的方案不能用到图②的方法.
19.(8分)如图,已知等边△ABC,AB=4,以AB为直径的半圆与BC边交于点D,过点D作DE⊥AC,垂足为E,过点E作EF⊥AB,垂足为F,连接FD.
(1)求证:DE是⊙O的切线;
(2)求EF的长.
20.(8分)如图,在梯形ABCD中,AD∥BC,对角线 AC、BD交于点 M,点E在边BC上,且∠DAE=∠DCB,联结AE,AE与BD交于点F.
(1)求证:;
(2)连接DE,如果BF=3FM,求证:四边形ABED是平行四边形.
21.(8分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?
22.(10分)某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A﹣﹣﹣不超过5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.
请根据以上的信息,回答下列问题:
(1)补全扇形统计图和条形统计图;
(2)所抽查学生参加社会实践活动天数的众数是 (选填:A、B、C、D、E);
(3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?
23.(12分)问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O是菱形ABCD的对角线交点,AB=5,下面是小红将菱形ABCD面积五等分的操作与证明思路,请补充完整.
(1)在AB边上取点E,使AE=4,连接OA,OE;
(2)在BC边上取点F,使BF=______,连接OF;
(3)在CD边上取点G,使CG=______,连接OG;
(4)在DA边上取点H,使DH=______,连接OH.由于AE=______+______=______+______=______+______=______.可证S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.
24.计算:.化简:.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
试题解析:∵sin∠CAB=
∴∠CAB=45°.
∵,
∴∠C′AB′=60°.
∴∠CAC′=60°-45°=15°,
鱼竿转过的角度是15°.
故选C.
考点:解直角三角形的应用.
2、D
【解析】
将除法变为乘法,化简二次根式,再用乘法分配律展开计算即可.
【详解】
原式=×=×(+1)=2+.
故选D.
【点睛】
本题主要考查二次根式的加减乘除混合运算,掌握二次根式的混合运算法则是解题关键.
3、D
【解析】
试题分析:根据积的乘方的性质进行计算,然后直接选取答案即可.
试题解析:(ab2)3=a3•(b2)3=a3b1.
故选D.
考点:幂的乘方与积的乘方.
4、D
【解析】
根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可
【详解】
∵4出现了2次,出现的次数最多,
∴众数是4;
这组数据的平均数是:(4+8+4+6+3)÷5=5;
故选D.
5、A
【解析】
观察四个选项图形,根据轴对称图形的概念即可得出结论.
【详解】
根据轴对称图形的概念,可知:选项A中的图形不是轴对称图形.
故选A.
【点睛】
此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.
6、B
【解析】
根据只有符号不同的两个数互为相反数,可得答案.
【详解】
7的相反数是−7,
故选:B.
【点睛】
此题考查相反数,解题关键在于掌握其定义.
7、B
【解析】
根据圆内接四边形的性质得出∠C的度数,进而利用平行线的性质得出∠ABC的度数,利用角平分线的定义和三角形内角和解答即可.
【详解】
∵四边形ABCD内接于⊙O,∠A=130°,
∴∠C=180°-130°=50°,
∵AD∥BC,
∴∠ABC=180°-∠A=50°,
∵BD平分∠ABC,
∴∠DBC=25°,
∴∠BDC=180°-25°-50°=105°,
故选:B.
【点睛】
本题考查了圆内接四边形的性质,关键是根据圆内接四边形的性质得出∠C的度数.
8、C
【解析】
互为相反数的两个数是指只有符号不同的两个数,所以的相反数是,
故选C.
9、D
【解析】
解:∵I是△ABC的内心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,故C正确,不符合题意;
∴=,∴BD=CD,故A正确,不符合题意;
∵∠DAC=∠DBC,∴∠BAD=∠DBC.∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠DBI=∠DIB,∴BD=DI,故B正确,不符合题意.
故选D.
点睛:本题考查了三角形的内切圆和内心的,以及等腰三角形的判定与性质,同弧所对的圆周角相等.
10、B
【解析】
由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的
中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8
名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的
分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.
故选B.
【点睛】
此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反
映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统
计量进行合理的选择和恰当的运用.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、90°.
【解析】
根据三角形内角和得到∠A+∠B+∠C=180°,而∠C=30°,则可计算出∠A+∠B+=150°,由于∠A﹣∠B=30°,把两式相加消去∠B即可求得∠A的度数.
【详解】
解:∵∠A+∠B+∠C=180°,∠C=30°,
∴∠A+∠B+=150°,
∵∠A﹣∠B=30°,
∴2∠A=180°,
∴∠A=90°.
故答案为:90°.
【点睛】
本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.
12、
【解析】
设“复兴号”的速度为x千米/时,则原来列车的速度为(x-50)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.
【详解】
设“复兴号”的速度为x千米/时,则原来列车的速度为(x-50)千米/时,
根据题意得.
故答案为.
【点睛】
本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.
13、
【解析】
依据旋转的性质,即可得到,再根据,,即可得出,.最后在中,可得到.
【详解】
依题可知,,,,∴,在中,,,,,.
∴在中,.
故答案为:.
【点睛】
本题考查了坐标与图形变化,等腰直角三角形的性质以及含30°角的直角三角形的综合运用,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.
14、
【解析】
试题分析:如图所示,一只蚂蚁从点出发后有ABD、ABE、ACE、ACF四条路,所以蚂蚁从出发到达处的概率是.
考点:概率.
15、
【解析】
试题分析:这四个数中,奇数为1和3,则P(抽出的数字是奇数)=2÷4=.
考点:概率的计算.
16、.
【解析】
根据题意可知,掷一次骰子有6个可能结果,而点数为奇数的结果有3个,所以点数为奇数的概率为.
考点:概率公式.
三、解答题(共8题,共72分)
17、
【解析】
根据绝对值的性质、零指数幂的性质、特殊角的三角函数值、负整数指数幂的性质、二次根式的性质及乘方的定义分别计算后,再合并即可
【详解】
原式
.
【点睛】
此题主要考查了实数运算,正确化简各数是解题关键.
18、(1)8m;(2)答案不唯一
【解析】
(1)根据入射角等于反射角可得 ∠APB=∠CPD ,由 AB⊥BD、CD⊥BD 可得到 ∠ABP=∠CDP=90°,从而可证得三角形相似,根据相似三角形的性质列出比例式,即可求出CD的长.
(2)设计成视角问题求古城墙的高度.
【详解】
(1)解:由题意,得∠APB=∠CPD,∠ABP=∠CDP=90°,
∴Rt△ABP∽Rt△CDP,
∴ ,
∴CD==8.
答:该古城墙的高度为8m
(2)解:答案不唯一,如:如图,
在距这段古城墙底部am的E处,用高h(m)的测角仪DE测得这段古城墙顶端A的仰角为α.即可测量这段古城墙AB的高度,
过点D作DCAB于点C.在Rt△ACD中,∠ACD=90°,tanα=,
∴AC=α tanα,
∴AB=AC+BC=αtanα+h
【点睛】
本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.
19、 (1)见解析;(2) .
【解析】
(1)连接OD,根据切线的判定方法即可求出答案;
(2)由于OD∥AC,点O是AB的中点,从而可知OD为△ABC的中位线,在Rt△CDE中,∠C=60°,CE=CD=1,所以AE=AC−CE=4−1=3,在Rt△AEF中,所以EF=AE•sinA=3×sin60°=.
【详解】
(1)连接OD,
∵△ABC是等边三角形,
∴∠C=∠A=∠B=60°,
∵OD=OB,
∴△ODB是等边三角形,
∴∠ODB=60°
∴∠ODB=∠C,
∴OD∥AC,
∴DE⊥AC
∴OD⊥DE,
∴DE是⊙O的切线
(2)∵OD∥AC,点O是AB的中点,
∴OD为△ABC的中位线,
∴BD=CD=2
在Rt△CDE中,
∠C=60°,
∴∠CDE=30°,
∴CE=CD=1
∴AE=AC﹣CE=4﹣1=3
在Rt△AEF中,
∠A=60°,
∴EF=AE•sinA=3×sin60°=
【点睛】
本题考查圆的综合问题,涉及切线的判定,锐角三角函数,含30度角的直角三角形的性质,等边三角形的性质,本题属于中等题型.
20、(1) 证明见解析;(2) 证明见解析.
【解析】
分析:(1)由AD∥BC可得出∠DAE=∠AEB,结合∠DCB=∠DAE可得出∠DCB=∠AEB,进而可得出AE∥DC、△AMF∽△CMD,根据相似三角形的性质可得出=,根据AD∥BC,可得出△AMD∽△CMB,根据相似三角形的性质可得出=,进而可得出=,即MD2=MF•MB;
(2)设FM=a,则BF=3a,BM=4a.由(1)的结论可求出MD的长度,代入DF=DM+MF可得出DF的长度,由AD∥BC,可得出△AFD∽△△EFB,根据相似三角形的性质可得出AF=EF,利用“对角线互相平分的四边形是平行四边形”即可证出四边形ABED是平行四边形.
详解:(1)∵AD∥BC,∴∠DAE=∠AEB.∵∠DCB=∠DAE,∴∠DCB=∠AEB,∴AE∥DC,∴△AMF∽△CMD,∴=.
∵AD∥BC,∴△AMD∽△CMB,∴==,即MD2=MF•MB.
(2)设FM=a,则BF=3a,BM=4a.
由MD2=MF•MB,得:MD2=a•4a,∴MD=2a,∴DF=BF=3a.
∵AD∥BC,∴△AFD∽△△EFB,∴==1,∴AF=EF,∴四边形ABED是平行四边形.
点睛:本题考查了相似三角形的判定与性质、平行四边形的判定、平行线的性质以及矩形,解题的关键是:(1)利用相似三角形的性质找出=、=;(2)牢记“对角线互相平分的四边形是平行四边形”.
21、(1)若某天该商品每件降价3元,当天可获利1692元;
(2)2x;50﹣x.
(3)每件商品降价1元时,商场日盈利可达到2000元.
【解析】
(1)根据“盈利=单件利润×销售数量”即可得出结论;
(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;
(3)根据“盈利=单件利润×销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值.
【详解】
(1)当天盈利:(50-3)×(30+2×3)=1692(元).
答:若某天该商品每件降价3元,当天可获利1692元.
(2)∵每件商品每降价1元,商场平均每天可多售出2件,
∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.
故答案为2x;50-x.
(3)根据题意,得:(50-x)×(30+2x)=2000,
整理,得:x2-35x+10=0,
解得:x1=10,x2=1,
∵商城要尽快减少库存,
∴x=1.
答:每件商品降价1元时,商场日盈利可达到2000元.
【点睛】
考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式).
22、(1)见解析;(2)A;(3)800人.
【解析】
(1)用A组人数除以它所占的百分比求出样本容量,利用360°乘以对应的百分比即可求得扇形圆心角的度数,再求得时间是8天的人数,从而补全扇形统计图和条形统计图;
(2)根据众数的定义即可求解;
(3)利用总人数2000乘以对应的百分比即可求解.
【详解】
解:(1)∵被调查的学生人数为24÷40%=60人,
∴D类别人数为60﹣(24+12+15+3)=6人,
则D类别的百分比为×100%=10%,
补全图形如下:
(2)所抽查学生参加社会实践活动天数的众数是A,
故答案为:A;
(3)估计参加社会实践“活动天数不少于7天”的学生大约有2000×(25%+10%+5%)=800人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
23、 (1)见解析;(2)3;(3)2;(4)1,EB、BF;FC、CG;GD、DH;HA
【解析】
利用菱形四条边相等,分别在四边上进行截取和连接,得出AE=EB+BF=FC+CG+GD+DH
=HA,进一步求得S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.即可.
【详解】
(1)在AB边上取点E,使AE=4,连接OA,OE;
(2)在BC边上取点F,使BF=3,连接OF;
(3)在CD边上取点G,使CG=2,连接OG;
(4)在DA边上取点H,使DH=1,连接OH.
由于AE=EB+BF=FC+CG=GD+DH=HA.
可证S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.
故答案为:3,2,1;EB、BF;FC、CG;GD、DH;HA.
【点睛】
此题考查菱形的性质,熟练掌握菱形的四条边相等,对角线互相垂直是解题的关键.
24、(1)5;(2)-3x+4
【解析】
(1)第一项计算算术平方根,第二项计算零指数幂,第三项计算特殊角的三角函数值,最后计算有理数运算.
(2)利用完全平方公式和去括号法则进行计算,再进行合并同类项运算.
【详解】
(1)解:原式
(2)解:原式
【点睛】
本题考查实数的混合运算和整式运算,解题关键是熟练运用完全平方公式和熟记特殊角的三角函数值.
广西贵港市港南区2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份广西贵港市港南区2021-2022学年中考数学最后冲刺模拟试卷含解析,共15页。试卷主要包含了﹣6的倒数是,某班7名女生的体重,估计5﹣的值应在等内容,欢迎下载使用。
广西柳州市十二中学市级名校2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份广西柳州市十二中学市级名校2021-2022学年中考数学最后冲刺模拟试卷含解析,共22页。试卷主要包含了下列运算正确的是,下列分式中,最简分式是等内容,欢迎下载使用。
2022届广西南宁市江南区三十四中学达标名校中考数学最后一模试卷含解析: 这是一份2022届广西南宁市江南区三十四中学达标名校中考数学最后一模试卷含解析,共18页。试卷主要包含了我市某一周的最高气温统计如下表等内容,欢迎下载使用。