湖北省武汉新洲区五校联考2022年中考数学适应性模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为( )
A.115° B.120° C.125° D.130°
2.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为( )
A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm
3.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是( )
A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<0
4.如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点A1,C1的坐标分别是 ( )
A.A1(4,4),C1(3,2) B.A1(3,3),C1(2,1)
C.A1(4,3),C1(2,3) D.A1(3,4),C1(2,2)
5.若x是2的相反数,|y|=3,则的值是( )
A.﹣2 B.4 C.2或﹣4 D.﹣2或4
6.的倒数是( )
A. B.-3 C.3 D.
7.下列图案中,是轴对称图形的是( )
A. B. C. D.
8.在⊙O中,已知半径为5,弦AB的长为8,则圆心O到AB的距离为( )
A.3 B.4 C.5 D.6
9.下列图案中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
10.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4,则m+n的值是( )
A.﹣10 B.10 C.﹣6 D.2
二、填空题(本大题共6个小题,每小题3分,共18分)
11.等腰中,是BC边上的高,且,则等腰底角的度数为__________.
12.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A,B分别在l3,l2上,则sinα的值是_____.
13.一个圆锥的母线长15CM.高为9CM.则侧面展开图的圆心角________。
14.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=的图象上,则菱形的面积为_____.
15.按照一定规律排列依次为,…..按此规律,这列数中的第100个数是_____.
16.如图,已知,,则________.
三、解答题(共8题,共72分)
17.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:本次抽样调查共抽取了多少名学生?求测试结果为C等级的学生数,并补全条形图;若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.
18.(8分)如图,在航线l的两侧分别有观测点A和B,点A到航线的距离为2km,点B位于点A北偏东60°方向且与A相距10km.现有一艘轮船从位于点B南偏西76°方向的C处,正沿该航线自西向东航行,5分钟后该轮船行至点A的正北方向的D处.
(1)求观测点B到航线的距离;
(2)求该轮船航行的速度(结果精确到0.1km/h).
(参考数据: ≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
19.(8分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求函数y=kx+b和y=的表达式;
(2)已知点C(0,8),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.
20.(8分)在平面直角坐标系中,已知抛物线经过A(-3,0),B(0,-3),C(1,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S
关于m的函数关系式,并求出S的最大值;
(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
21.(8分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.
(1)求证:PA是⊙O的切线;
(2)若tan∠BAD=,且OC=4,求BD的长.
22.(10分)已知点O是正方形ABCD对角线BD的中点.
(1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.
①∠AEM=∠FEM; ②点F是AB的中点;
(2)如图2,若点E是OD上一点,点F是AB上一点,且使,请判断△EFC的形状,并说明理由;
(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当时,请猜想的值(请直接写出结论).
23.(12分)某汽车制造公司计划生产A、B两种新型汽车共40辆投放到市场销售.已知A型汽车每辆成本34万元,售价39万元;B型汽车每辆成本42万元,售价50万元.若该公司对此项计划的投资不低于1536万元,不高于1552万元.请解答下列问题:
(1)该公司有哪几种生产方案?
(2)该公司按照哪种方案生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少?
(3)在(2)的情况下,公司决定拿出利润的2.5%全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出答案)
24.为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
分析:
由已知条件易得∠AEB=70°,由此可得∠DEB=110°,结合折叠的性质可得∠DEF=55°,则由AD∥BC可得∠EFC=125°,再由折叠的性质即可得到∠EFC′=125°.
详解:
∵在△ABE中,∠A=90°,∠ABE=20°,
∴∠AEB=70°,
∴∠DEB=180°-70°=110°,
∵点D沿EF折叠后与点B重合,
∴∠DEF=∠BEF=∠DEB=55°,
∵在矩形ABCD中,AD∥BC,
∴∠DEF+∠EFC=180°,
∴∠EFC=180°-55°=125°,
∴由折叠的性质可得∠EFC′=∠EFC=125°.
故选C.
点睛:这是一道有关矩形折叠的问题,熟悉“矩形的四个内角都是直角”和“折叠的性质”是正确解答本题的关键.
2、B
【解析】
【分析】由已知可证△ABO∽CDO,故 ,即.
【详解】由已知可得,△ABO∽CDO,
所以, ,
所以,,
所以,AB=5.4
故选B
【点睛】本题考核知识点:相似三角形. 解题关键点:熟记相似三角形的判定和性质.
3、B
【解析】
试题分析:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,
∴k<0,b>0,
故选B.
考点:一次函数的性质和图象
4、A
【解析】
分析:根据B点的变化,确定平移的规律,将△ABC向右移5个单位、上移1个单位,然后确定A、C平移后的坐标即可.
详解:由点B(﹣4,1)的对应点B1的坐标是(1,2)知,需将△ABC向右移5个单位、上移1个单位,
则点A(﹣1,3)的对应点A1的坐标为(4,4)、点C(﹣2,1)的对应点C1的坐标为(3,2),
故选A.
点睛:此题主要考查了平面直角坐标系中的平移,关键是根据已知点的平移变化总结出平移的规律.
5、D
【解析】
直接利用相反数以及绝对值的定义得出x,y的值,进而得出答案.
【详解】
解:∵x是1的相反数,|y|=3,
∴x=-1,y=±3,
∴y-x=4或-1.
故选D.
【点睛】
此题主要考查了有理数的混合运算,正确得出x,y的值是解题关键.
6、A
【解析】
先求出,再求倒数.
【详解】
因为
所以的倒数是
故选A
【点睛】
考核知识点:绝对值,相反数,倒数.
7、B
【解析】
根据轴对称图形的定义,逐一进行判断.
【详解】
A、C是中心对称图形,但不是轴对称图形;B是轴对称图形;D不是对称图形.
故选B.
【点睛】
本题考查的是轴对称图形的定义.
8、A
【解析】
解:作OC⊥AB于C,连结OA,如图.∵OC⊥AB,∴AC=BC=AB=×8=1.在Rt△AOC中,OA=5,∴OC=,即圆心O到AB的距离为2.故选A.
9、B
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是轴对称图形,不是中心对称图形,故此选项错误;
B、是轴对称图形,也是中心对称图形,故此选项正确;
C、不是轴对称图形,是中心对称图形,故此选项错误;
D、不是轴对称图形,是中心对称图形,故此选项错误.
故选B.
【点睛】
考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
10、D
【解析】
根据“一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4”,结合根与系数的关系,分别列出关于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.
【详解】
解:根据题意得:
x1+x2=﹣m=2+4,
解得:m=﹣6,
x1•x2=n=2×4,
解得:n=8,
m+n=﹣6+8=2,
故选D.
【点睛】
本题考查了根与系数的关系,正确掌握根与系数的关系是解决问题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、,,
【解析】
分三种情况:①点A是顶角顶点时,②点A是底角顶点,且AD在△ABC外部时,③点A是底角顶点,且AD在△ABC内部时,再结合直角三角形中,30°的角所对的直角边等于斜边的一半即可求解.
【详解】
①如图,若点A是顶角顶点时,
∵AB=AC,AD⊥BC,
∴BD=CD,∵,
∴AD=BD=CD,
在Rt△ABD中,∠B=∠BAD=
;
②如图,若点A是底角顶点,且AD在△ABC外部时,
∵,AC=BC,
∴,
∴∠ACD=30°,
∴∠BAC=∠ABC=×30°=15°;
③如图,若点A是底角顶点,且AD在△ABC内部时,
∵,AC=BC,
∴,
∴∠C=30°,
∴∠BAC=∠ABC=(180°-30°)=75°;
综上所述,△ABC底角的度数为45°或15°或75°;
故答案为,,.
【点睛】
本题考查了等腰三角形的性质和直角三角形中30°的角所对的直角边等于斜边的一半的性质,解题的关键是要分情况讨论.
12、
【解析】
过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用锐角的正弦等于对边比斜边列式计算即可得解.
【详解】
如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,
∵∠CAD+∠ACD=90°,
∠BCE+∠ACD=90°,
∴∠CAD=∠BCE,
在等腰直角△ABC中,AC=BC,
在△ACD和△CBE中,
,
∴△ACD≌△CBE(AAS),
∴CD=BE=1,
∴AD=2,
∴AC=,
∴AB=AC=,
∴sinα=,
故答案为.
【点睛】
本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,正确添加辅助线构造出全等三角形是解题的关键.
13、288°
【解析】
母线长为15cm,高为9cm,由勾股定理可得圆锥的底面半径;由底面周长与扇形的弧长相等求得圆心角.
【详解】
解:如图所示,在Rt△SOA中,SO=9,SA=15;
则:
设侧面属开图扇形的国心角度数为n,则由 得n=288°
故答案为:288°.
【点睛】
本题利用了勾股定理,弧长公式,圆的周长公式和扇形面积公式求解.
14、1
【解析】
连接AC交OB于D,由菱形的性质可知.根据反比例函数中k的几何意义,得出△AOD的面积=1,从而求出菱形OABC的面积=△AOD的面积的4倍.
【详解】
连接AC交OB于D.
四边形OABC是菱形,
.
点A在反比例函数的图象上,
的面积,
菱形OABC的面积=的面积=1.
【点睛】
本题考查的知识点是菱形的性质及反比例函数的比例系数k的几何意义.解题关键是反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即.
15、
【解析】
根据按一定规律排列的一列数依次为…,可得第n个数为,据此可得第100个数.
【详解】
由题意,数列可改写成,…,
则后一个数的分子比前一个数的法则大2,后一个数的分母比前一个数的分母大3,
∴第n个数为=,
∴这列数中的第100个数为=;
故答案为:.
【点睛】
本题考查数字类规律,解题的关键是读懂题意,掌握数字类规律基本解题方法.
16、65°
【解析】
根据两直线平行,同旁内角互补求出∠3,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
【详解】
∵m∥n,∠1=105°,
∴∠3=180°−∠1=180°−105°=75°
∴∠α=∠2−∠3=140°−75°=65°
故答案为:65°.
【点睛】
此题考查平行线的性质,解题关键在于利用同旁内角互补求出∠3.
三、解答题(共8题,共72分)
17、(1)50;(2)16;(3)56(4)见解析
【解析】
(1)用A等级的频数除以它所占的百分比即可得到样本容量;
(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;
(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.
【详解】
(1)10÷20%=50(名)
答:本次抽样调查共抽取了50名学生.
(2)50-10-20-4=16(名)
答:测试结果为C等级的学生有16名.
图形统计图补充完整如下图所示:
(3)700×=56(名)
答:估计该中学八年级学生中体能测试结果为D等级的学生有56名.
(4)画树状图为:
共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,
所以抽取的两人恰好都是男生的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.
18、(1)观测点到航线的距离为3km(2)该轮船航行的速度约为40.6km/h
【解析】试题分析:(1)设AB与l交于点O,利用∠DAO=60°,利用∠DAO的余弦求出OA长,从而求得OB长,继而求得BE长即可;
(2)先计算出DE=EF+DF=求出DE=5,再由进而由tan∠CBE=求出EC,即可求出CD的长,进而求出航行速度.
试题解析:(1)设AB与l交于点O,
在Rt△AOD中,
∵∠OAD=60°,AD=2(km),
∴OA==4(km),
∵AB=10(km),
∴OB=AB﹣OA=6(km),
在Rt△BOE中,∠OBE=∠OAD=60°,
∴BE=OB•cos60°=3(km),
答:观测点B到航线l的距离为3km;
(2)∵∠OAD=60°,AD=2(km),∴OD=AD·tan60°=2 ,
∵∠BEO=90°,BO=6,BE=3,∴OE==3,
∴DE=OD+OE=5(km);
CE=BE•tan∠CBE=3tan76°,
∴CD=CE﹣DE=3tan76°﹣5≈3.38(km),
∵5(min)= (h),∴v==12CD=12×3.38≈40.6(km/h),
答:该轮船航行的速度约为40.6km/h.
【点睛】本题主要考查了方向角问题以及利用锐角三角函数关系得出EC,DE,DO的长是解题关键.
19、(1) ,y=2x﹣1;(2).
【解析】
(1)利用待定系数法即可解答;
(2)作MD⊥y轴,交y轴于点D,设点M的坐标为(x,2x-1),根据MB=MC,得到CD=BD,再列方程可求得x的值,得到点M的坐标
【详解】
解:(1)把点A(4,3)代入函数得:a=3×4=12,
∴.
∵A(4,3)
∴OA=1,
∵OA=OB,
∴OB=1,
∴点B的坐标为(0,﹣1)
把B(0,﹣1),A(4,3)代入y=kx+b得:
∴y=2x﹣1.
(2)作MD⊥y轴于点D.
∵点M在一次函数y=2x﹣1上,
∴设点M的坐标为(x,2x﹣1)则点D(0,2x-1)
∵MB=MC,
∴CD=BD
∴8-(2x-1)=2x-1+1
解得:x=
∴2x﹣1= ,
∴点M的坐标为 .
【点睛】
本题考查了一次函数与反比例函数的交点,解决本题的关键是利用待定系数法求解析式.
20、(1)
时,S最大为
(1)(-1,1)或或或(1,-1)
【解析】
试题分析:(1)先假设出函数解析式,利用三点法求解函数解析式.
(2)设出M点的坐标,利用S=S△AOM+S△OBM﹣S△AOB即可进行解答;
(1)当OB是平行四边形的边时,表示出PQ的长,再根据平行四边形的对边相等列出方程求解即可;当OB是对角线时,由图可知点A与P应该重合,即可得出结论.
试题解析:解:(1)设此抛物线的函数解析式为:y=ax2+bx+c(a≠0),
将A(-1,0),B(0,-1),C(1,0)三点代入函数解析式得:
解得,所以此函数解析式为:.
(2)∵M点的横坐标为m,且点M在这条抛物线上,∴M点的坐标为:(m,),
∴S=S△AOM+S△OBM-S△AOB=×1×(-)+×1×(-m)-×1×1=-(m+)2+,
当m=-时,S有最大值为:S=-.
(1)设P(x,).分两种情况讨论:
①当OB为边时,根据平行四边形的性质知PB∥OQ,
∴Q的横坐标的绝对值等于P的横坐标的绝对值,
又∵直线的解析式为y=-x,则Q(x,-x).
由PQ=OB,得:|-x-()|=1
解得: x=0(不合题意,舍去),-1, ,∴Q的坐标为(-1,1)或或;
②当BO为对角线时,如图,知A与P应该重合,OP=1.四边形PBQO为平行四边形则BQ=OP=1,Q横坐标为1,代入y=﹣x得出Q为(1,﹣1).
综上所述:Q的坐标为:(-1,1)或或或(1,-1).
点睛:本题是对二次函数的综合考查,有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,综合性较强,但难度不大,仔细分析便不难求解.
21、(1)证明见解析;(2)
【解析】
试题分析:(1)连接OB,由SSS证明△PAO≌△PBO,得出∠PAO=∠PBO=90°即可;
(2)连接BE,证明△PAC∽△AOC,证出OC是△ABE的中位线,由三角形中位线定理得出BE=2OC,由△DBE∽△DPO可求出.
试题解析:(1)连结OB,则OA=OB.如图1,
∵OP⊥AB,
∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB.
在△PAO和△PBO中,
∵,
∴△PAO≌△PBO(SSS),
∴∠PBO=∠PAO.∵PB为⊙O的切线,B为切点,∴∠PBO=90°,
∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;
(2)连结BE.如图2,
∵在Rt△AOC中,tan∠BAD=tan∠CAO=,且OC=4,
∴AC=1,则BC=1.在Rt△APO中,∵AC⊥OP,
∴△PAC∽△AOC,∴AC2=OC•PC,解得PC=9,
∴OP=PC+OC=2.在Rt△PBC中,由勾股定理,得PB=,
∵AC=BC,OA=OE,即OC为△ABE的中位线.
∴OC=BE,OC∥BE,∴BE=2OC=3.
∵BE∥OP,∴△DBE∽△DPO,
∴,即,解得BD=.
22、(1)①证明见解析;②证明见解析;(2)△EFC是等腰直角三角形.理由见解析;(3).
【解析】
试题分析:(1)①过点E作EG⊥BC,垂足为G,根据ASA证明△CEG≌△FEM得CE=FE,再根据SAS证明△ABE≌△CBE 得AE=CE,在△AEF中根据等腰三角形“三线合一”即可证明结论成立;②设AM=x,则AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x, DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,从而AF=AB,得到点F是AB的中点.;(2)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AME≌△FME(SAS),从而可得△EFC是等腰直角三角形.(3)方法同第(2)小题.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AEM≌△FEM (ASA),得AM=FM,设AM=x,则AF=2x,DN =x,DE=x,BD=x,AB=x,=2x:x=.
试题解析:(1)①过点E作EG⊥BC,垂足为G,则四边形MBGE为正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四边形ABCD为正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB, ∴∠AEM=∠FEM.
②设AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四边形AMND为矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴点F是AB的中点.
(2)△EFC是等腰直角三角形.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG,设AM=x,则DN=AM=x,DE =x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.
(3)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG. ∵EF⊥CE,∴∠FEC =90°,∴∠CEG+∠FEG=90°.又∠MEG =90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG =∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM (ASA),∴AM=FM.设AM=x,则AF=2x,DN =x,DE=x,∴BD=x.∴AB=x.∴=2x:x=.
考点:四边形综合题.
23、(1)共有三种方案,分别为①A型号16辆时, B型号24辆;②A型号17辆时,B型号23辆;③A型号18辆时,B型号22辆;(2)当时,万元;(3)A型号4辆,B型号8辆; A型号10辆,B型号 3辆两种方案
【解析】
(1)设A型号的轿车为x辆,可根据题意列出不等式组,根据问题的实际意义推出整数值;
(2)根据“利润=售价-成本”列出一次函数的解析式解答;
(3)根据(2)中方案设计计算.
【详解】
(1)设生产A型号x辆,则B型号(40-x)辆
153634x+42(40-x)1552
解得,x可以取值16,17,18共有三种方案,分别为
A型号16辆时, B型号24辆
A型号17辆时,B型号23辆
A型号18辆时,B型号22辆
(2)设总利润W万元
则W=
=
w随x的增大而减小
当时,万元
(3)A型号4辆,B型号8辆; A型号10辆,B型号 3辆两种方案
【点睛】
本题主要考查了一次函数的应用,以及一元一次不等式组的应用,此题是典型的数学建模问题,要先将实际问题转化为不等式组解应用题.
24、水坝原来的高度为12米
【解析】
试题分析:设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.
试题解析:设BC=x米,
在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈=,
在Rt△EBD中,
∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,
即2+x=4+,解得x=12,即BC=12,
答:水坝原来的高度为12米..
考点:解直角三角形的应用,坡度.
[数学]2024年湖北省武汉市新洲区中考数学综合训练模拟试卷(一)(含解析): 这是一份[数学]2024年湖北省武汉市新洲区中考数学综合训练模拟试卷(一)(含解析),共26页。
武汉新洲区六校联考2022年中考数学四模试卷含解析: 这是一份武汉新洲区六校联考2022年中考数学四模试卷含解析,共16页。试卷主要包含了计算等内容,欢迎下载使用。
湖北省武汉汉阳区四校联考2022年中考数学适应性模拟试题含解析: 这是一份湖北省武汉汉阳区四校联考2022年中考数学适应性模拟试题含解析,共17页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。