|试卷下载
终身会员
搜索
    上传资料 赚现金
    湖北省武汉市武昌区粮道街中学2021-2022学年中考数学最后冲刺模拟试卷含解析
    立即下载
    加入资料篮
    湖北省武汉市武昌区粮道街中学2021-2022学年中考数学最后冲刺模拟试卷含解析01
    湖北省武汉市武昌区粮道街中学2021-2022学年中考数学最后冲刺模拟试卷含解析02
    湖北省武汉市武昌区粮道街中学2021-2022学年中考数学最后冲刺模拟试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省武汉市武昌区粮道街中学2021-2022学年中考数学最后冲刺模拟试卷含解析

    展开
    这是一份湖北省武汉市武昌区粮道街中学2021-2022学年中考数学最后冲刺模拟试卷含解析,共21页。试卷主要包含了下列计算正确的是,的整数部分是,下列各式计算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列图案是轴对称图形的是(  )
    A. B. C. D.
    2.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是(  )

    A.一次性购买数量不超过10本时,销售价格为20元/本
    B.a=520
    C.一次性购买10本以上时,超过10本的那部分书的价格打八折
    D.一次性购买20本比分两次购买且每次购买10本少花80元
    3.将抛物线向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )
    A. B. C. D.
    4.如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )

    A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC
    5.下列四个几何体中,主视图与左视图相同的几何体有(  )

    A.1个 B.2个 C.3个 D.4个
    6.下列计算正确的是( )
    A. B. C. D.
    7.的整数部分是(  )
    A.3 B.5 C.9 D.6
    8.下列各式计算正确的是( )
    A.a2+2a3=3a5 B.a•a2=a3 C.a6÷a2=a3 D.(a2)3=a5
    9.一个半径为24的扇形的弧长等于20π,则这个扇形的圆心角是(  )
    A.120° B.135° C.150° D.165°
    10.如图所示,若将△ABO绕点O顺时针旋转180°后得到△A1B1O,则A点的对应点A1点的坐标是(  )

    A.(3,﹣2) B.(3,2) C.(2,3) D.(2,﹣3)
    11.如图,在四边形ABCD中,对角线 AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=10,BD=6,则四边形EFGH的面积为(  )

    A.20 B.15 C.30 D.60
    12.要使式子有意义,的取值范围是( )
    A. B.且 C.. 或 D. 且
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,已知等腰直角三角形 ABC 的直角边长为 1,以 Rt△ABC 的斜边 AC 为直角 边,画第二个等腰直角三角形 ACD,再以 Rt△ACD 的斜边 AD 为直角边,画第三个等腰直 角三角形 ADE……依此类推,直到第五个等腰直角三角形 AFG,则由这五个等腰直角三角
    形所构成的图形的面积为__________.

    14.如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB=__________°.

    15.如果a+b=2,那么代数式(a﹣)÷的值是______.
    16.(2017黑龙江省齐齐哈尔市)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是______.

    17.如图,在正方形网格中,线段A′B′可以看作是线段AB经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由线段AB得到线段A′B′的过程______

    18.哈尔滨市某楼盘以每平方米10000元的均价对外销售,经过连续两次上调后,均价为每平方米12100元,则平均每次上调的百分率为_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,为的直径,,为上一点,过点作的弦,设.

    (1)若时,求、的度数各是多少?
    (2)当时,是否存在正实数,使弦最短?如果存在,求出的值,如果不存在,说明理由;
    (3)在(1)的条件下,且,求弦的长.
    20.(6分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是  (填方案一,方案二,或方案三),则B点坐标是   ,求出你所选方案中的抛物线的表达式;因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.

    21.(6分)如图,AB是⊙O的直径, ⊙O过BC的中点D,DE⊥AC.求证: △BDA∽△CED.

    22.(8分)某市旅游景区有A,B,C,D,E等著名景点,该市旅游部门统计绘制出2018年春节期间旅游情况统计图(如图),根据图中信息解答下列问题:

    (1)2018年春节期间,该市A,B,C,D,E这五个景点共接待游客   万人,扇形统计图中E景点所对应的圆心角的度数是   ,并补全条形统计图.
    (2)甲,乙两个旅行团在A,B,D三个景点中随机选择一个,这两个旅行团选中同一景点的概率是   .
    23.(8分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是   .

    24.(10分)在一个不透明的盒子中,装有3个分别写有数字1,2,3的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.
    (1)用列表法或树状图法写出所有可能出现的结果;
    (2)求两次取出的小球上的数字之和为奇数的概率P.
    25.(10分)已知,如图直线l1的解析式为y=x+1,直线l2的解析式为y=ax+b(a≠0);这两个图象交于y轴上一点C,直线l2与x轴的交点B(2,0)
    (1)求a、b的值;
    (2)过动点Q(n,0)且垂直于x轴的直线与l1、l2分别交于点M、N都位于x轴上方时,求n的取值范围;
    (3)动点P从点B出发沿x轴以每秒1个单位长的速度向左移动,设移动时间为t秒,当△PAC为等腰三角形时,直接写出t的值.

    26.(12分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PA、PB、AB、OP,已知PB是⊙O的切线.
    (1)求证:∠PBA=∠C;
    (2)若OP∥BC,且OP=9,⊙O的半径为3,求BC的长.

    27.(12分)从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,B中技,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图).请回答以下问题:
    (1)该班学生选择   观点的人数最多,共有   人,在扇形统计图中,该观点所在扇形区域的圆心角是   度.
    (2)利用样本估计该校初三学生选择“中技”观点的人数.
    (3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答).




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    解:A.此图形不是轴对称图形,不合题意;
    B.此图形不是轴对称图形,不合题意;
    C.此图形是轴对称图形,符合题意;
    D.此图形不是轴对称图形,不合题意.
    故选C.
    2、D
    【解析】
    A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.
    【详解】
    解:A、∵200÷10=20(元/本),
    ∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;
    C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,
    ∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;
    B、∵200+16×(30﹣10)=520(元),
    ∴a=520,B选项正确;
    D、∵200×2﹣200﹣16×(20﹣10)=40(元),
    ∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.
    故选D.
    【点睛】
    考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.
    3、D
    【解析】
    根据“左加右减、上加下减”的原则,
    将抛物线向左平移1个单位所得直线解析式为:;
    再向下平移3个单位为:.故选D.
    4、D
    【解析】
    解:根据图中尺规作图的痕迹,可得∠DAE=∠B,故A选项正确,
    ∴AE∥BC,故C选项正确,
    ∴∠EAC=∠C,故B选项正确,
    ∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,
    故选D.
    【点睛】
    本题考查作图—复杂作图;平行线的判定与性质;三角形的外角性质.
    5、D
    【解析】
    解:①正方体的主视图与左视图都是正方形;
    ②球的主视图与左视图都是圆;
    ③圆锥主视图与左视图都是三角形;
    ④圆柱的主视图和左视图都是长方形;
    故选D.
    6、D
    【解析】
    分析:根据合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法的运算法则计算即可.
    解答:解:A、x+x=2x,选项错误;
    B、x?x=x2,选项错误;
    C、(x2)3=x6,选项错误;
    D、正确.
    故选D.
    7、C
    【解析】
    解:∵=﹣1,=﹣…=﹣+,∴原式=﹣1+﹣+…﹣+=﹣1+10=1.故选C.
    8、B
    【解析】
    根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变,指数相减;同底数幂相乘,底数不变指数相加,对各选项分析判断利用排除法求解
    【详解】
    A.a2与2a3不是同类项,故A不正确;
    B.a•a2=a3,正确;
    C.原式=a4,故C不正确;
    D.原式=a6,故D不正确;
    故选:B.
    【点睛】
    此题考查同底数幂的乘法,幂的乘方与积的乘方,解题的关键在于掌握运算法则.
    9、C
    【解析】
    这个扇形的圆心角的度数为n°,根据弧长公式得到20π=,然后解方程即可.
    【详解】
    解:设这个扇形的圆心角的度数为n°,
    根据题意得20π=,
    解得n=150,
    即这个扇形的圆心角为150°.
    故选C.
    【点睛】
    本题考查了弧长公式:L=(n为扇形的圆心角的度数,R为扇形所在圆的半径).
    10、A
    【解析】
    由题意可知, 点A与点A1关于原点成中心对称,根据图象确定点A的坐标,即可求得点A1的坐标.
    【详解】
    由题意可知, 点A与点A1关于原点成中心对称,
    ∵点A的坐标是(﹣3,2),
    ∴点A关于点O的对称点A'点的坐标是(3,﹣2).
    故选A.
    【点睛】
    本题考查了中心对称的性质及关于原点对称点的坐标的特征,熟知中心对称的性质及关于原点对称点的坐标的特征是解决问题的关键.
    11、B
    【解析】
    有一个角是直角的平行四边形是矩形.利用中位线定理可得出四边形EFGH是矩形,根据矩形的面积公式解答即可.
    【详解】
    ∵点E、F分别为四边形ABCD的边AD、AB的中点,
    ∴EF∥BD,且EF=BD=1.
    同理求得EH∥AC∥GF,且EH=GF=AC=5,
    又∵AC⊥BD,
    ∴EF∥GH,FG∥HE且EF⊥FG.
    四边形EFGH是矩形.
    ∴四边形EFGH的面积=EF•EH=1×5=2,即四边形EFGH的面积是2.
    故选B.
    【点睛】
    本题考查的是中点四边形.解题时,利用了矩形的判定以及矩形的定理,矩形的判定定理有:
    (1)有一个角是直角的平行四边形是矩形;
    (2)有三个角是直角的四边形是矩形;
    (1)对角线互相平分且相等的四边形是矩形.
    12、D
    【解析】
    根据二次根式和分式有意义的条件计算即可.
    【详解】
    解:∵ 有意义,
    ∴a+2≥0且a≠0,
    解得a≥-2且a≠0.
    故本题答案为:D.
    【点睛】
    二次根式和分式有意义的条件是本题的考点,二次根式有意义的条件是被开方数大于等于0,分式有意义的条件是分母不为0.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、12.2
    【解析】
    ∵△ABC是边长为1的等腰直角三角形,∴S△ABC=×1×1==11-1;
    AC==,AD==1,∴S△ACD==1=11-1
    ∴第n个等腰直角三角形的面积是1n-1.∴S△AEF=14-1=4,S△AFG=12-1=8,
    由这五个等腰直角三角形所构成的图形的面积为+1+1+4+8=12.2.故答案为12.2.
    14、1.
    【解析】
    连接BD,如图,根据圆周角定理得到∠ABD=90°,则利用互余计算出∠D=1°,然后再利用圆周角定理得到∠ACB的度数.
    【详解】
    连接BD,如图,

    ∵AD为△ABC的外接圆⊙O的直径,
    ∴∠ABD=90°,
    ∴∠D=90°﹣∠BAD=90°﹣50°=1°,
    ∴∠ACB=∠D=1°.
    故答案为1.
    【点睛】
    本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.
    15、2
    【解析】
    分析:根据分式的运算法则即可求出答案.
    详解:当a+b=2时,
    原式=
    =
    =a+b
    =2
    故答案为:2
    点睛:本题考查分式的运算,解题的关键熟练运用分式的运算法则,本题属于基础题型.
    16、10,,.
    【解析】
    解:如图,过点A作AD⊥BC于点D,∵△ABC边AB=AC=10,BC=12,∴BD=DC=6,∴AD=8,如图①所示:可得四边形ACBD是矩形,则其对角线长为:10;
    如图②所示:AD=8,连接BC,过点C作CE⊥BD于点E,则EC=8,BE=2BD=12,则BC=;
    如图③所示:BD=6,由题意可得:AE=6,EC=2BE=16,故AC==.
    故答案为10,,.

    17、将线段AB绕点B逆时针旋转90°,在向右平移2个单位长度
    【解析】
    根据图形的旋转和平移性质即可解题.
    【详解】
    解:将线段AB绕点B逆时针旋转90°,在向右平移2个单位长度即可得到A′B′、
    【点睛】
    本题考查了旋转和平移,属于简单题,熟悉旋转和平移的概念是解题关键.
    18、10%
    【解析】
    设平均每次上调的百分率是x,因为经过两次上调,且知道调前的价格和调后的价格,从而列方程求出解.
    【详解】
    设平均每次上调的百分率是x,
    依题意得,
    解得:,(不合题意,舍去).
    答:平均每次上调的百分率为10%.
    故答案是:10%.
    【点睛】
    此题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1), ;(2)见解析;(3).
    【解析】
    (1)连结AD、BD,利用m求出角的关系进而求出∠BCD、∠ACD的度数;
    (2)连结,由所给关系式结合直径求出AP,OP,根据弦CD最短,求出∠BCD、∠ACD的度数,即可求出m的值.
    (3)连结AD、BD,先求出AD,BD,AP,BP的长度,利用△APC∽△DPB和△CPB∽△APD得出比例关系式,得出比例关系式结合勾股定理求出CP,PD,即可求出CD.
    【详解】
    解:(1)如图1,连结、.

    是的直径

    又,

    (2)如图2,连结.

    ,,
    ,则,
    解得

    要使最短,则于





    故存在这样的值,且;
    (3)如图3,连结、.

    由(1)可得,
    ,,

    ,,



    ①,

    同理

    ③,
    由①得,由③得

    在中,,


    由②,得,

    【点睛】
    本题考查了相似三角形的判定与性质和锐角三角函数关系和圆周角定理等知识,掌握圆周角定理以及垂径定理是解题的关键.
    20、 (1) 方案1; B(5,0); ;(2) 3.2m.
    【解析】
    试题分析:(1)根据抛物线在坐标系的位置,可用待定系数法求抛物线的解析式.
    (2)把x=3代入抛物线的解析式,即可得到结论.
    试题解析:解:方案1:(1)点B的坐标为(5,0),设抛物线的解析式为:.由题意可以得到抛物线的顶点为(0,5),代入解析式可得:,∴抛物线的解析式为:;
    (2)由题意:把代入,解得:=3.2,∴水面上涨的高度为3.2m.
    方案2:(1)点B的坐标为(10,0).设抛物线的解析式为:.
    由题意可以得到抛物线的顶点为(5,5),代入解析式可得:,∴抛物线的解析式为:;
    (2)由题意:把代入解得:=3.2,∴水面上涨的高度为3.2m.
    方案3:(1)点B的坐标为(5, ),由题意可以得到抛物线的顶点为(0,0).
    设抛物线的解析式为:,把点B的坐标(5, ),代入解析式可得:,
    ∴抛物线的解析式为:;
    (2)由题意:把代入解得:=,∴水面上涨的高度为3.2m.
    21、证明见解析.
    【解析】
    不难看出△BDA和△CED都是直角三角形,证明△BDA∽△CED,只需要另外找一对角相等即可,由于AD是△ABC的中线,又可证AD⊥BC,即AD为BC边的中垂线,从而得到∠B=∠C,即可证相似.
    【详解】
    ∵AB是⊙O直径,
    ∴AD⊥BC,
    又BD=CD,
    ∴AB=AC,
    ∴∠B=∠C,
    又∠ADB=∠DEC=90°,
    ∴△BDA∽△CED.
    【点睛】
    本题重点考查了圆周角定理、直径所对的圆周角为直角及相似三角形判定等知识的综合运用.
    22、(1)50,43.2°,补图见解析;(2).
    【解析】
    (1)由A景点的人数以及百分比进行计算即可得到该市周边景点共接待游客数;再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B景点接待游客数补全条形统计图;
    (2)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.
    【详解】
    解:(1)该市景点共接待游客数为:15÷30%=50(万人),
    E景点所对应的圆心角的度数是:
    B景点人数为:50×24%=12(万人),
    补全条形统计图如下:

    故答案是:50,43.2o.
    (2)画树状图可得:

    ∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,
    ∴同时选择去同一个景点的概率=.
    23、(1)证明见解析;(2)1.
    【解析】
    【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;
    (2)由菱形的对角线互相垂直平分和菱形的面积公式解答.
    【详解】(1)∵四边形ABCD是菱形,
    ∴AC⊥BD,
    ∴∠COD=90°.
    ∵CE∥OD,DE∥OC,
    ∴四边形OCED是平行四边形,
    又∠COD=90°,
    ∴平行四边形OCED是矩形;
    (2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.
    ∵四边形ABCD是菱形,
    ∴AC=2OC=1,BD=2OD=2,
    ∴菱形ABCD的面积为:AC•BD=×1×2=1,
    故答案为1.
    【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.
    24、 (1见解析;(2).
    【解析】
    (1)根据题意先画出树状图,得出所有可能出现的结果数;
    (2)根据(1)可得共有9种情况,两次取出小球上的数字和为奇数的情况,再根据概率公式即可得出答案.
    【详解】
    (1)列表得,

    (2)两次取出的小球上的数字之和为奇数的共有4种,
    ∴P两次取出的小球上数字之和为奇数的概率P=.
    【点睛】
    此题可以采用列表法或者采用树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    25、(1)a=﹣;(2)﹣1<n<2;(3)满足条件的时间t为1s,2s,或(3+)或(3﹣)s.
    【解析】
    试题分析:(1)、根据题意求出点C的坐标,然后将点C和点B的坐标代入直线解析式求出a和b的值;(2)、根据题意可知点Q在点A和点B之间,从而求出n的取值范围;(3)、本题需要分几种情况分别来进行计算,即AC=P1C,P2A=P2C和AP3=AC三种情况分别进行计算得出t的值.
    试题解析:(1)、解:∵点C是直线l1:y=x+1与轴的交点, ∴C(0,1),
    ∵点C在直线l2上, ∴b=1, ∴直线l2的解析式为y=ax+1, ∵点B在直线l2上,
    ∴2a+1=0, ∴a=﹣;
    (2)、解:由(1)知,l1的解析式为y=x+1,令y=0, ∴x=﹣1,
    由图象知,点Q在点A,B之间, ∴﹣1<n<2
    (3)、解:如图,

    ∵△PAC是等腰三角形, ∴①点x轴正半轴上时,当AC=P1C时,
    ∵CO⊥x轴, ∴OP1=OA=1, ∴BP1=OB﹣OP1=2﹣1=1, ∴1÷1=1s,
    ②当P2A=P2C时,易知点P2与O重合, ∴BP2=OB=2, ∴2÷1=2s,
    ③点P在x轴负半轴时,AP3=AC, ∵A(﹣1,0),C(0,1), ∴AC=, ∴AP3=,
    ∴BP3=OB+OA+AP3=3+或BP3=OB+OA﹣AP3=3﹣,
    ∴(3+)÷1=(3+)s,或(3﹣)÷1=(3﹣ )s,
    即:满足条件的时间t为1s,2s,或(3+)或(3﹣)s.
    点睛:本题主要考查的就是一次函数的性质、等腰三角形的性质和动点问题,解决这个问题的关键就是要能够根据题意进行分类讨论,从而得出答案.在解决一次函数和等腰三角形问题时,我们一定要根据等腰三角形的性质来进行分类讨论,可以利用圆规来作出图形,然后根据实际题目来求出答案.
    26、 (1)证明见解析;(2)BC=1.
    【解析】
    (1)连接OB,根据切线的性质和圆周角定理求出∠PBO=∠ABC=90°,即可求出答案;
    (2)求出△ABC∽△PBO,得出比例式,代入求出即可.
    【详解】
    (1)连接OB,

    ∵PB是⊙O的切线,∴PB⊥OB,∴∠PBA+∠OBA=90°,
    ∵AC是⊙O的直径,∴∠ABC=90°,∠C+∠BAC=90°,
    ∵OA=OB,∴∠OBA=∠BAO,∴∠PBA=∠C;
    (2)∵⊙O的半径是3 ,
    ∴OB=3,AC=6,∵OP∥BC,∴∠BOP=∠OBC,
    ∵OB=OC,∴∠OBC=∠C,∴∠BOP=∠C,∵∠ABC=∠PBO=90°,
    ∴△ABC∽△PBO,∴=,∴=,∴BC=1.
    【点睛】
    本题考查平行线的性质,切线的性质,相似三角形的性质和判定,圆周角定理等知识点,能综合运用知识点进行推理是解题关键.
    27、(4)A高中观点.4. 446;(4)456人;(4).
    【解析】
    试题分析:(4)全班人数乘以选择“A高中”观点的百分比即可得到选择“A高中”观点的人数,用460°乘以选择“A高中”观点的百分比即可得到选择“A高中”的观点所在扇形区域的圆心角的度数;
    (4)用全校初三年级学生数乘以选择“B中技”观点的百分比即可估计该校初三学生选择“中技”观点的人数;
    (4)先计算出该班选择“就业”观点的人数为4人,则可判断有4位女同学和4位男生选择“就业”观点,再列表展示44种等可能的结果数,找出出现4女的结果数,然后根据概率公式求解.
    试题解析:(4)该班学生选择A高中观点的人数最多,共有60%×50=4(人),在扇形统计图中,该观点所在扇形区域的圆心角是60%×460°=446°;
    (4)∵800×44%=456(人),
    ∴估计该校初三学生选择“中技”观点的人数约是456人;
    (4)该班选择“就业”观点的人数=50×(4-60%-44%)=50×8%=4(人),则该班有4位女同学和4位男生选择“就业”观点,
    列表如下:

    共有44种等可能的结果数,其中出现4女的情况共有4种.
    所以恰好选到4位女同学的概率=.
    考点:4.列表法与树状图法;4.用样本估计总体;4.扇形统计图.

    相关试卷

    湖北省武汉市武昌区粮道街中学2023-2024学年九年级数学第一学期期末监测模拟试题含答案: 这是一份湖北省武汉市武昌区粮道街中学2023-2024学年九年级数学第一学期期末监测模拟试题含答案,共7页。试卷主要包含了函数与抛物线的图象可能是,在中,,,则,下列事件中,属于随机事件的是等内容,欢迎下载使用。

    2023-2024学年湖北省武汉市武昌区粮道街中学数学八年级第一学期期末质量检测模拟试题含答案: 这是一份2023-2024学年湖北省武汉市武昌区粮道街中学数学八年级第一学期期末质量检测模拟试题含答案,共6页。试卷主要包含了下列各式中正确的是,如图,中,,,等内容,欢迎下载使用。

    2022-2023学年湖北省武汉市武昌区粮道街中学七下数学期末达标检测模拟试题含答案: 这是一份2022-2023学年湖北省武汉市武昌区粮道街中学七下数学期末达标检测模拟试题含答案,共6页。试卷主要包含了下列命题中的真命题是,如图,在Rt△ABC中等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map