|试卷下载
搜索
    上传资料 赚现金
    湖北省襄阳市襄州区2022年中考数学仿真试卷含解析
    立即下载
    加入资料篮
    湖北省襄阳市襄州区2022年中考数学仿真试卷含解析01
    湖北省襄阳市襄州区2022年中考数学仿真试卷含解析02
    湖北省襄阳市襄州区2022年中考数学仿真试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省襄阳市襄州区2022年中考数学仿真试卷含解析

    展开
    这是一份湖北省襄阳市襄州区2022年中考数学仿真试卷含解析,共23页。试卷主要包含了已知点P等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列说法正确的是(  )
    A.﹣3是相反数 B.3与﹣3互为相反数
    C.3与互为相反数 D.3与﹣互为相反数
    2.下列计算正确的是(  )
    A.a2•a3=a6 B.(a2)3=a6 C.a6﹣a2=a4 D.a5+a5=a10
    3.对于数据:6,3,4,7,6,0,1.下列判断中正确的是( )
    A.这组数据的平均数是6,中位数是6 B.这组数据的平均数是6,中位数是7
    C.这组数据的平均数是5,中位数是6 D.这组数据的平均数是5,中位数是7
    4.下表是某校合唱团成员的年龄分布.
    年龄/岁
    13
    14
    15
    16
    频数
    5
    15
    x

    对于不同的x,下列关于年龄的统计量不会发生改变的是( )
    A.众数、中位数 B.平均数、中位数 C.平均数、方差 D.中位数、方差
    5.关于的方程有实数根,则整数的最大值是( )
    A.6 B.7 C.8 D.9
    6.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为(  )
    A.5 B.﹣1 C.2 D.﹣5
    7.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是(  )

    A. B. C. D.
    8.在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果 C也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C有( )

    A.6个 B.7个 C.8个 D.9个
    9.已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是(  )
    A.m+n<0 B.m+n>0 C.m<n D.m>n
    10.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为(   )

    A. B. C. D.
    11.下列运算正确的是(  )
    A.2a2+3a2=5a4 B.(﹣)﹣2=4
    C.(a+b)(﹣a﹣b)=a2﹣b2 D.8ab÷4ab=2ab
    12.下列运算正确的是(  )
    A.(a2)4=a6 B.a2•a3=a6 C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为______.

    14.如图所示,四边形ABCD中,,对角线AC、BD交于点E,且,,若,,则CE的长为_____.

    15.如图,AB是半圆O的直径,E是半圆上一点,且OE⊥AB,点C为的中点,则∠A=__________°.

    16.的相反数是______,的倒数是______.
    17.将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.
    18.如图,小阳发现电线杆的影子落在土坡的坡面和地面上,量得,米,与地面成角,且此时测得米的影长为米,则电线杆的高度为__________米.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包.试确定周销售量y(包)与售价x(元/包)之间的函数关系式;试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?
    20.(6分)先化简,再求值:(x﹣2﹣)÷,其中x=.
    21.(6分)如图,点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD,求证:AE=FC.

    22.(8分)某校运动会需购买A、B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.
    (1)求A、B两种奖品的单价各是多少元?
    (2)学校计划购买A、B两种奖品共100件,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.请您确定当购买A种奖品多少件时,费用W的值最少.
    23.(8分)先化简,再求值:,其中
    24.(10分)如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.

    (1)OC的长为  ;
    (2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=  ;
    (3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t(秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.
    25.(10分)如图,圆内接四边形ABCD的两组对边延长线分别交于E、F,∠AEB、∠AFD的平分线交于P点.
    求证:PE⊥PF.

    26.(12分)如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD、BD、CD.
    (1)求证:AD=CD;
    (2)若AB=10,OE=3,求tan∠DBC的值.

    27.(12分)图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2、当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开、已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、设AP=x分米.
    (1)求x的取值范围;
    (2)若∠CPN=60°,求x的值;
    (3)设阳光直射下,伞下的阴影(假定为圆面)面积为y,求y关于x的关系式(结果保留π).




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    符号不同,绝对值相等的两个数互为相反数,可据此来判断各选项是否正确.
    【详解】
    A、3和-3互为相反数,错误;
    B、3与-3互为相反数,正确;
    C、3与互为倒数,错误;
    D、3与-互为负倒数,错误;
    故选B.
    【点睛】
    此题考查相反数问题,正确理解相反数的定义是解答此题的关键.
    2、B
    【解析】
    根据同底数幂乘法、幂的乘方的运算性质计算后利用排除法求解.
    【详解】
    A、a2•a3=a5,错误;
    B、(a2)3=a6,正确;
    C、不是同类项,不能合并,错误;
    D、a5+a5=2a5,错误;
    故选B.
    【点睛】
    本题综合考查了整式运算的多个考点,包括同底数幂的乘法、幂的乘方、合并同类项,需熟练掌握且区分清楚,才不容易出错.
    3、C
    【解析】
    根据题目中的数据可以按照从小到大的顺序排列,从而可以求得这组数据的平均数和中位数.
    【详解】
    对于数据:6,3,4,7,6,0,1,
    这组数据按照从小到大排列是:0,3,4,6,6,7,1,
    这组数据的平均数是: 中位数是6,
    故选C.
    【点睛】
    本题考查了平均数、中位数的求法,解决本题的关键是明确它们的意义才会计算,求平均数是用一组数据的和除以这组数据的个数;中位数的求法分两种情况:把一组数据从小到大排成一列, 正中间如果是一个数,这个数就是中位数,如果正中间是两个数,那中位数是这两个数的平均数.
    4、A
    【解析】
    由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.
    【详解】
    由题中表格可知,年龄为15岁与年龄为16岁的频数和为,则总人数为,故该组数据的众数为14岁,中位数为(岁),所以对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选A.
    【点睛】
    本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.
    5、C
    【解析】
    方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a-6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.
    【详解】
    当a-6=0,即a=6时,方程是-1x+6=0,解得x=;
    当a-6≠0,即a≠6时,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得≈1.6,
    取最大整数,即a=1.
    故选C.
    6、B
    【解析】
    根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.
    【详解】
    ∵关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,
    ∴-2+m=−,
    解得,m=-1,
    故选B.
    7、A
    【解析】
    解:∵AE平分∠BAD,
    ∴∠DAE=∠BAE;
    又∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠BEA=∠DAE=∠BAE,
    ∴AB=BE=6,
    ∵BG⊥AE,垂足为G,
    ∴AE=2AG.
    在Rt△ABG中,∵∠AGB=90°,AB=6,BG=,
    ∴AG==2,
    ∴AE=2AG=4;
    ∴S△ABE=AE•BG=.
    ∵BE=6,BC=AD=9,
    ∴CE=BC﹣BE=9﹣6=3,
    ∴BE:CE=6:3=2:1,
    ∵AB∥FC,
    ∴△ABE∽△FCE,
    ∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=S△ABE=.
    故选A.

    【点睛】
    本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.
    8、A
    【解析】
    根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.
    【详解】
    如图:分情况讨论:

    ①AB为等腰直角△ABC底边时,符合条件的C点有2个;
    ②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.
    故选:C.
    【点睛】
    本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.
    9、D
    【解析】
    根据反比例函数的性质,可得答案.
    【详解】
    ∵y=−的k=-2<1,图象位于二四象限,a<1,
    ∴P(a,m)在第二象限,
    ∴m>1;
    ∵b>1,
    ∴Q(b,n)在第四象限,
    ∴n<1.
    ∴n<1<m,
    即m>n,
    故D正确;
    故选D.
    【点睛】
    本题考查了反比例函数的性质,利用反比例函数的性质:k<1时,图象位于二四象限是解题关键.
    10、A
    【解析】
    试题解析:连接OE,OF,ON,OG,

    在矩形ABCD中,
    ∵∠A=∠B=90°,CD=AB=4,
    ∵AD,AB,BC分别与⊙O相切于E,F,G三点,
    ∴∠AEO=∠AFO=∠OFB=∠BGO=90°,
    ∴四边形AFOE,FBGO是正方形,
    ∴AF=BF=AE=BG=2,
    ∴DE=3,
    ∵DM是⊙O的切线,
    ∴DN=DE=3,MN=MG,
    ∴CM=5-2-MN=3-MN,
    在Rt△DMC中,DM2=CD2+CM2,
    ∴(3+NM)2=(3-NM)2+42,
    ∴NM=,
    ∴DM=3+=,
    故选B.
    考点:1.切线的性质;3.矩形的性质.
    11、B
    【解析】
    根据合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则对各选项依次进行判断即可解答.
    【详解】
    A. 2a2+3a2=5a2,故本选项错误;
    B. (−)-2=4,正确;
    C. (a+b)(−a−b)=−a2−2ab−b2,故本选项错误;
    D. 8ab÷4ab=2,故本选项错误.
    故答案选B.
    【点睛】
    本题考查了合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则,解题的关键是熟练的掌握合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则.
    12、C
    【解析】
    根据幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法计算即可.
    【详解】
    A、原式=a8,所以A选项错误;
    B、原式=a5,所以B选项错误;
    C、原式= ,所以C选项正确;
    D、与不能合并,所以D选项错误.
    故选:C.
    【点睛】
    本题考查了幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法,熟练掌握它们的运算法则是解答本题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1.
    【解析】
    试题解析:设俯视图的正方形的边长为.
    ∵其俯视图为正方形,从主视图可以看出,正方形的对角线长为

    解得
    ∴这个长方体的体积为4×3=1.
    14、
    【解析】
    此题有等腰三角形,所以可作BH⊥CD,交EC于点G,利用三线合一性质及邻补角互补可得∠BGD=120°,根据四边形内角和360°,得到∠ABG+∠ADG=180°.此时再延长GB至K,使AK=AG,构造出等边△AGK.易证△ABK≌△ADG,从而说明△ABD是等边三角形,BD=AB=,根据DG、CG、GH线段之间的关系求出CG长度,在Rt△DBH中利用勾股定理及三角函数知识得到∠EBG的正切值,然后作EF⊥BG,求出EF,在Rt△EFG中解出EG长度,最后CE=CG+GE求解.
    【详解】
    如图,作于H,交AC于点G,连接DG.

    ∵,
    ∴BH垂直平分CD,
    ∴,
    ∴,
    ∴,
    ∴,
    延长GB至K,连接AK使,则是等边三角形,
    ∴,
    又,
    ∴≌(),
    ∴,
    ∴是等边三角形,
    ∴,
    设,则,,
    ∴,
    ∴,
    在中,,解得,,
    当时,,所以,
    ∴,,,
    作,设,,,,,
    ∴,,
    ∴,则,
    故答案为
    【点睛】
    本题主要考查了等腰三角形的性质及等边三角形、全等三角形的判定和性质以及勾股定理的运用,综合性较强,正确作出辅助线是解题的关键.
    15、22.5
    【解析】
    连接半径OC,先根据点C为的中点,得∠BOC=45°,再由同圆的半径相等和等腰三角形的性质得:∠A=∠ACO=×45°,可得结论.
    【详解】
    连接OC,
    ∵OE⊥AB,
    ∴∠EOB=90°,
    ∵点C为的中点,
    ∴∠BOC=45°,
    ∵OA=OC,
    ∴∠A=∠ACO=×45°=22.5°,
    故答案为:22.5°.
    【点睛】
    本题考查了圆周角定理与等腰三角形的性质.解题的关键是注意掌握数形结合思想的应用.
    16、2,
    【解析】
    试题分析:根据相反数和倒数的定义分别进行求解,﹣2的相反数是2,
    ﹣2的倒数是.
    考点:倒数;相反数.
    17、y=2x+1
    【解析】
    分析:直接根据函数图象平移的法则进行解答即可.
    详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;
    故答案为y=2x+1.
    点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.
    18、(14+2)米
    【解析】
    过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F,根据直角三角形30°角所对的直角边等于斜边的一半求出DE,再根据勾股定理求出CE,然后根据同时同地物高与影长成正比列式求出EF,再求出BF,再次利用同时同地物高与影长成正比列式求解即可.
    【详解】
    如图,过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F.
    ∵CD=8,CD与地面成30°角,
    ∴DE=CD=×8=4,
    根据勾股定理得:CE===4.
    ∵1m杆的影长为2m,
    ∴=,
    ∴EF=2DE=2×4=8,
    ∴BF=BC+CE+EF=20+4+8=(28+4).
    ∵=,
    ∴AB=(28+4)=14+2.
    故答案为(14+2).

    【点睛】
    本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比的性质,作辅助线求出AB的影长若全在水平地面上的长BF是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)y=﹣5x+350;(2)w=﹣5x2+450x﹣7000(30≤x≤40);(3)当售价定为45元时,商场每周销售这种防尘口罩所获得的利润w(元)最大,最大利润是1元.
    【解析】试题分析:(1)根据题意可以直接写出y与x之间的函数关系式;
    (2)根据题意可以直接写出w与x之间的函数关系式,由供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务可以确定x的取值范围;
    (3)根据第(2)问中的函数解析式和x的取值范围,可以解答本题.
    试题解析:解:(1)由题意可得:y=200﹣(x﹣30)×5=﹣5x+350
    即周销售量y(包)与售价x(元/包)之间的函数关系式是:y=﹣5x+350;
    (2)由题意可得,w=(x﹣20)×(﹣5x+ 350)=﹣5x2+450x﹣7000(30≤x≤70),即商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式是:w=﹣5x2+450x﹣7000(30≤x≤40);
    (3)∵w=﹣5x2+450x﹣7000=﹣5(x﹣45)2+1
    ∵二次项系数﹣5<0,∴x=45时,w取得最大值,最大值为1.
    答:当售价定为45元时,商场每周销售这种防尘口罩所获得的利润最大,最大利润是1元.
    点睛:本题考查了二次函数的应用,解题的关键是明确题意,可以写出相应的函数解析式,并确定自变量的取值范围以及可以求出函数的最值.
    20、
    【解析】
    根据分式的运算法则即可求出答案.
    【详解】
    原式,


    当时,原式
    【点睛】
    本题考查的知识点是分式的化简求值,解题关键是化简成最简再代入计算.
    21、证明见解析.
    【解析】
    由已知条件BE∥DF,可得出∠ABE=∠D,再利用ASA证明△ABE≌△FDC即可.
    证明:∵BE∥DF,∴∠ABE=∠D,
    在△ABE和△FDC中,
    ∠ABE=∠D,AB=FD,∠A=∠F
    ∴△ABE≌△FDC(ASA),
    ∴AE=FC.
    “点睛”此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证△ABC和△FDC全等.
    22、(1)A、B两种奖品的单价各是10元、15元;(2)W(元)与m(件)之间的函数关系式是W=﹣5m+1,当购买A种奖品75件时,费用W的值最少.
    【解析】
    (1)设A种奖品的单价是x元、B种奖品的单价是y元,根据题意可以列出相应的方程组,从而可以求得A、B两种奖品的单价各是多少元;
    (2)根据题意可以得到W(元)与m(件)之间的函数关系式,然后根据A种奖品的数量不大于B种奖品数量的3倍,可以求得m的取值范围,再根据一次函数的性质即可解答本题.
    【详解】
    (1)设A种奖品的单价是x元、B种奖品的单价是y元,根据题意得:

    解得:.
    答:A种奖品的单价是10元、B种奖品的单价是15元.
    (2)由题意可得:W=10m+15(100﹣m)=﹣5m+1.
    ∵A种奖品的数量不大于B种奖品数量的3倍,∴m≤3(100﹣m),解得:m≤75
    ∴当m=75时,W取得最小值,此时W=﹣5×75+1=2.
    答:W(元)与m(件)之间的函数关系式是W=﹣5m+1,当购买A种奖品75件时,费用W的值最少.
    【点睛】
    本题考查了一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.
    23、 ;.
    【解析】
    先对小括号部分通分,同时把除化为乘,再根据分式的基本性质约分,最后代入求值.
    【详解】
    解:原式==
    把代入得:原式=.
    【点睛】
    本题考查分式的化简求值,计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.
    24、(4)4;(2);(4)点E的坐标为(4,2)、(,)、(4,2).
    【解析】
    分析:(4)过点B作BH⊥OA于H,如图4(4),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.
    (2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图4(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.
    (4)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.
    详解:(4)过点B作BH⊥OA于H,如图4(4),则有∠BHA=90°=∠COA,∴OC∥BH.
    ∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.
    ∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.
    ∵∠BHA=90°,∠BAO=45°,
    ∴tan∠BAH==4,∴BH=HA=4,∴OC=BH=4.
    故答案为4.
    (2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图4(2).
    由(4)得:OH=2,BH=4.
    ∵OC与⊙M相切于N,∴MN⊥OC.
    设圆的半径为r,则MN=MB=MD=r.
    ∵BC⊥OC,OA⊥OC,∴BC∥MN∥OA.
    ∵BM=DM,∴CN=ON,∴MN=(BC+OD),∴OD=2r﹣2,∴DH==.
    在Rt△BHD中,∵∠BHD=90°,∴BD2=BH2+DH2,∴(2r)2=42+(2r﹣4)2.
    解得:r=2,∴DH=0,即点D与点H重合,∴BD⊥0A,BD=AD.
    ∵BD是⊙M的直径,∴∠BGD=90°,即DG⊥AB,∴BG=AG.
    ∵GF⊥OA,BD⊥OA,∴GF∥BD,∴△AFG∽△ADB,
    ∴===,∴AF=AD=2,GF=BD=2,∴OF=4,
    ∴OG===2.
    同理可得:OB=2,AB=4,∴BG=AB=2.
    设OR=x,则RG=2﹣x.
    ∵BR⊥OG,∴∠BRO=∠BRG=90°,∴BR2=OB2﹣OR2=BG2﹣RG2,
    ∴(2)2﹣x2=(2)2﹣(2﹣x)2.
    解得:x=,∴BR2=OB2﹣OR2=(2)2﹣()2=,∴BR=.
    在Rt△ORB中,sin∠BOR===.
    故答案为.
    (4)①当∠BDE=90°时,点D在直线PE上,如图2.
    此时DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t. 则有2t=2.
    解得:t=4.则OP=CD=DB=4.
    ∵DE∥OC,∴△BDE∽△BCO,∴==,∴DE=2,∴EP=2,
    ∴点E的坐标为(4,2).
    ②当∠BED=90°时,如图4.
    ∵∠DBE=OBC,∠DEB=∠BCO=90°,∴△DBE∽△OBC,
    ∴==,∴BE=t.
    ∵PE∥OC,∴∠OEP=∠BOC.
    ∵∠OPE=∠BCO=90°,∴△OPE∽△BCO,
    ∴==,∴OE=t.
    ∵OE+BE=OB=2t+t=2.
    解得:t=,∴OP=,OE=,∴PE==,
    ∴点E的坐标为().
    ③当∠DBE=90°时,如图4.
    此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.
    则有OD=PE,EA==(6﹣t)=6﹣t,
    ∴BE=BA﹣EA=4﹣(6﹣t)=t﹣2.
    ∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,
    ∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.
    在Rt△DBE中,cos∠BED==,∴DE=BE,
    ∴t=t﹣2)=2t﹣4.
    解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).
    综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(4,2)、()、(4,2).


    点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.
    25、证明见解析.
    【解析】
    由圆内接四边形ABCD的两组对边延长线分别交于E、F,∠AEB、∠AFD的平分线交于P点,继而可得EM=EN,即可证得:PE⊥PF.
    【详解】
    ∵四边形内接于圆,
    ∴,
    ∵平分,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∵平分,
    ∴.
    【点睛】
    此题考查了圆的内接多边形的性质以及圆周角定理.此题难度不大,注意掌握数形结合思想的应用.
    26、(1)见解析;(2)tan∠DBC=.
    【解析】
    (1)先利用圆周角定理得到∠ACB=90°,再利用平行线的性质得∠AEO=90°,则根据垂径定理得到,从而有AD=CD;
    (2)先在Rt△OAE中利用勾股定理计算出AE,则根据正切的定义得到tan∠DAE的值,然后根据圆周角定理得到∠DAC=∠DBC,从而可确定tan∠DBC的值.
    【详解】
    (1)证明:∵AB为直径,
    ∴∠ACB=90°,
    ∵OD∥BC,
    ∴∠AEO=∠ACB=90°,
    ∴OE⊥AC,
    ∴,
    ∴AD=CD;
    (2)解:∵AB=10,
    ∴OA=OD=5,
    ∴DE=OD﹣OE=5﹣3=2,
    在Rt△OAE中,AE==4,
    ∴tan∠DAE=,
    ∵∠DAC=∠DBC,
    ∴tan∠DBC=.
    【点睛】
    垂径定理及圆周角定理是本题的考点,熟练掌握垂径定理及圆周角定理是解题的关键.
    27、(1)0≤x≤10;(1)x=6;(3)y=﹣πx1+54πx.
    【解析】
    (1)根据题意,得AC=CN+PN,进一步求得AB的长,即可求得x的取值范围;
    (1)根据等边三角形的判定和性质即可求解;
    (3)连接MN、EF,分别交AC于B、H.此题根据菱形CMPN的性质求得MB的长,再根据相似三角形的对应边的比相等,求得圆的半径即可.
    【详解】
    (1)∵BC=1分米,AC=CN+PN=11分米,
    ∴AB=AC﹣BC=10分米,
    ∴x的取值范围是:0≤x≤10;
    (1)∵CN=PN,∠CPN=60°,
    ∴△PCN是等边三角形,
    ∴CP=6分米,
    ∴AP=AC﹣PC=6分米,
    即当∠CPN=60°时,x=6;
    (3)连接MN、EF,分别交AC于B、H,

    ∵PM=PN=CM=CN,
    ∴四边形PNCM是菱形,
    ∴MN与PC互相垂直平分,AC是∠ECF的平分线,
    PB==6-,
    在Rt△MBP中,PM=6分米,
    ∴MB1=PM1﹣PB1=61﹣(6﹣x)1=6x﹣x1.
    ∵CE=CF,AC是∠ECF的平分线,
    ∴EH=HF,EF⊥AC,
    ∵∠ECH=∠MCB,∠EHC=∠MBC=90°,
    ∴△CMB∽△CEH,
    ∴=,
    ∴,
    ∴EH1=9•MB1=9•(6x﹣x1),
    ∴y=π•EH1=9π(6x﹣x1),
    即y=﹣πx1+54πx.
    【点睛】
    此题主要考查了相似三角形的应用以及菱形的性质和二次函数的应用,难点是第(3)问,熟练运用菱形的性质、相似三角形的性质和二次函数的实际应用.

    相关试卷

    2024年湖北省襄阳市襄州区中考模拟数学试题(含解析): 这是一份2024年湖北省襄阳市襄州区中考模拟数学试题(含解析),共26页。试卷主要包含了小器一容三斛;大器一,解答题解答应写出文字说明等内容,欢迎下载使用。

    2023年湖北省襄阳市襄州区中考数学适应性试卷(5月份)(含解析): 这是一份2023年湖北省襄阳市襄州区中考数学适应性试卷(5月份)(含解析),共26页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。

    2023年湖北省襄阳市襄州区中考数学模拟试卷: 这是一份2023年湖北省襄阳市襄州区中考数学模拟试卷,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map