湖南长沙市开福区达标名校2021-2022学年毕业升学考试模拟卷数学卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图,内接于,若,则
A. B. C. D.
2.若点M(﹣3,y1),N(﹣4,y2)都在正比例函数y=﹣k2x(k≠0)的图象上,则y1与y2的大小关系是( )
A.y1<y2 B.y1>y2 C.y1=y2 D.不能确定
3.九章算术是中国古代数学专著,九章算术方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是
A. B. C. D.
4.三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为( )
A.14 B.12 C.12或14 D.以上都不对
5.如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为( )
A.7 B.8 C.9 D.10
6.若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( )
A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5
7.要使式子有意义,x的取值范围是( )
A.x≠1 B.x≠0 C.x>﹣1且≠0 D.x≥﹣1且x≠0
8.如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A10B10O=( )
A. B. C. D.
9.在0,-2,5,,-0.3中,负数的个数是( ).
A.1 B.2 C.3 D.4
10.下列命题是假命题的是( )
A.有一个外角是120°的等腰三角形是等边三角形
B.等边三角形有3条对称轴
C.有两边和一角对应相等的两个三角形全等
D.有一边对应相等的两个等边三角形全等
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知是整数,则正整数n的最小值为___
12.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.
13.分解因式:2m2-8=_______________.
14.随意的抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全相同),那么这粒豆子落在黑色方格中的可能性是_____.
15.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=_____ °.
16.如图,以原点O为圆心的圆交X轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD= .
三、解答题(共8题,共72分)
17.(8分)如图1,在△ABC中,点P为边AB所在直线上一点,连结CP,M为线段CP的中点,若满足∠ACP=∠MBA,则称点P为△ABC的“好点”.
(1)如图2,当∠ABC=90°时,命题“线段AB上不存在“好点”为 (填“真”或“假”)命题,并说明理由;
(2)如图3,P是△ABC的BA延长线的一个“好点”,若PC=4,PB=5,求AP的值;
(3)如图4,在Rt△ABC中,∠CAB=90°,点P是△ABC的“好点”,若AC=4,AB=5,求AP的值.
18.(8分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为.求袋子中白球的个数;(请通过列式或列方程解答)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)
19.(8分)一辆汽车,新车购买价30万元,第一年使用后折旧,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值为万元,求这辆车第二、三年的年折旧率.
20.(8分)如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.
(1)求证:DB=DE;
(2)若AB=12,BD=5,求⊙O的半径.
21.(8分)如图,Rt△ABC中,∠C=90°,∠A=30°,BC=1.
(1)实践操作:尺规作图,不写作法,保留作图痕迹.
①作∠ABC的角平分线交AC于点D.
②作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE、DF.
(2)推理计算:四边形BFDE的面积为 .
22.(10分)如图,已知反比例函数y=与一次函数y=k2x+b的图象交于A(1,8),B(-4,m).求k1,k2,b的值;求△AOB的面积;若M(x1,y1),N(x2,y2)是反比例函数y=的图象上的两点,且x1
23.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于C(0,3),直线y=+m经过点C,与抛物线的另一交点为点D,点P是直线CD上方抛物线上的一个动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.
(1)求抛物线解析式并求出点D的坐标;
(2)连接PD,△CDP的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;
(3)当△CPE是等腰三角形时,请直接写出m的值.
24.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
根据圆周角定理求出,根据三角形内角和定理计算即可.
【详解】
解:由圆周角定理得,,
,
,
故选:B.
【点睛】
本题考查的是三角形的外接圆与外心,掌握圆周角定理、等腰三角形的性质、三角形内角和定理是解题的关键.
2、A
【解析】
根据正比例函数的增减性解答即可.
【详解】
∵正比例函数y=﹣k2x(k≠0),﹣k2<0,
∴该函数的图象中y随x的增大而减小,
∵点M(﹣3,y1),N(﹣4,y2)在正比例函数y=﹣k2x(k≠0)图象上,﹣4<﹣3,
∴y2>y1,
故选:A.
【点睛】
本题考查了正比例函数图象与系数的关系:对于y=kx(k为常数,k≠0),当k>0时, y=kx的图象经过一、三象限,y随x的增大而增大;当k<0时, y=kx的图象经过二、四象限,y随x的增大而减小.
3、B
【解析】
解:设走路快的人要走 x 步才能追上走路慢的人,根据题意得:.故选B.
点睛:本题考查了一元一次方程的应用.找准等量关系,列方程是关键.
4、B
【解析】
解方程得:x=5或x=1.
当x=1时,3+4=1,不能组成三角形;
当x=5时,3+4>5,三边能够组成三角形.
∴该三角形的周长为3+4+5=12,
故选B.
5、C
【解析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【详解】
根据三视图知,该几何体中小正方体的分布情况如下图所示:
所以组成这个几何体的小正方体个数最多为9个,
故选C.
【点睛】
考查了三视图判定几何体,关键是对三视图灵活运用,体现了对空间想象能力的考查.
6、B
【解析】
试题解析:∵关于x的一元二次方程方程有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.
7、D
【解析】
根据二次根式由意义的条件是:被开方数大于或等于1,和分母不等于1,即可求解.
【详解】
根据题意得:,
解得:x≥-1且x≠1.
故选:D.
【点睛】
本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数.
8、B
【解析】
根据等腰三角形两底角相等用α表示出∠A2B2O,依此类推即可得到结论.
【详解】
∵B1A2=B1B2,∠A1B1O=α,
∴∠A2B2O=α,
同理∠A3B3O=×α=α,
∠A4B4O=α,
∴∠AnBnO=α,
∴∠A10B10O=,
故选B.
【点睛】
本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.
9、B
【解析】
根据负数的定义判断即可
【详解】
解:根据负数的定义可知,这一组数中,负数有两个,即-2和-0.1.
故选B.
10、C
【解析】
解:A. 外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;
B. 等边三角形有3条对称轴,故B选项正确;
C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;
D.利用SSS.可以判定三角形全等.故D选项正确;
故选C.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
因为是整数,且,则1n是完全平方数,满足条件的最小正整数n为1.
【详解】
∵,且是整数,
∴是整数,即1n是完全平方数;
∴n的最小正整数值为1.
故答案为:1.
【点睛】
主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.
12、8
【解析】
主视图、俯视图是分别从物体正面、上面看,所得到的图形.
【详解】
由俯视图可知:底层最少有5个小立方体,
由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体,
∴搭成这个几何体的小正方体的个数最少是5+2+1=8(个).
故答案为:8
【点睛】
考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.
13、2(m+2)(m-2)
【解析】
先提取公因式2,再对余下的多项式利用平方差公式继续分解因式.
【详解】
2m2-8,
=2(m2-4),
=2(m+2)(m-2)
【点睛】
本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法,十字相乘等方法分解.
14、
【解析】
根据面积法:求出豆子落在黑色方格的面积与总面积的比即可解答.
【详解】
∵共有15个方格,其中黑色方格占5个,
∴这粒豆子落在黑色方格中的概率是=,
故答案为.
【点睛】
此题考查了几何概率的求法,利用概率=相应的面积与总面积之比求出是解题关键.
15、1
【解析】
根据△ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出∠ACE=∠A=30°,再根据∠ACB=80°即可解答.
【详解】
∵DE垂直平分AC,∠A=30°,
∴AE=CE,∠ACE=∠A=30°,
∵∠ACB=80°,
∴∠BCE=80°-30°=1°.
故答案为:1.
16、65°
【解析】
解:由题意分析之,得出弧BD对应的圆周角是∠DAB,
所以,=40°,由此则有:∠OCD=65°
考点:本题考查了圆周角和圆心角的关系
点评:此类试题属于难度一般的试题,考生在解答此类试题时一定要对圆心角、弧、弦等的基本性质要熟练把握
三、解答题(共8题,共72分)
17、(1)真;(2);(3)或或.
【解析】
(1)先根据直角三角形斜边的中线等于斜边的一半可知MP=MB,从而∠MPB=∠MBP,然后根据三角形外角的性质说明即可;
(2)先证明△PAC∽△PMB,然后根据相似三角形的性质求解即可;
(3)分三种情况求解:P为线段AB上的“好点”, P为线段AB延长线上的“好点”, P为线段BA延长线上的“好点”.
【详解】
(1)真 .
理由如下:如图,当∠ABC=90°时,M为PC中点,BM=PM,
则∠MPB=∠MBP>∠ACP,
所以在线段AB上不存在“好点”;
(2)∵P为BA延长线上一个“好点”;
∴∠ACP=∠MBP;
∴△PAC∽△PMB;
∴即;
∵M为PC中点,
∴MP=2;
∴;
∴.
(3)第一种情况,P为线段AB上的“好点”,则∠ACP=∠MBA,找AP中点D,连结MD;
∵M为CP中点;
∴MD为△CPA中位线;
∴MD=2,MD//CA;
∴∠DMP=∠ACP=∠MBA;
∴△DMP∽△DBM;
∴DM2=DP·DB即4= DP·(5DP);
解得DP=1,DP=4(不在AB边上,舍去;)
∴AP=2
第二种情况(1),P为线段AB延长线上的“好点”,则∠ACP=∠MBA,找AP中点D,此时,D在线段AB上,如图,连结MD;
∵M为CP中点;
∴MD为△CPA中位线;
∴MD=2,MD//CA;
∴∠DMP=∠ACP=∠MBA;
∴△DMP∽△DBM
∴DM2=DP·DB即4= DP·(5DA)= DP·(5DP);
解得DP=1(不在AB延长线上,舍去),DP=4
∴AP=8;
第二种情况(2),P为线段AB延长线上的“好点”,找AP中点D,此时,D在AB延长线上,如图,连结MD;
此时,∠MBA>∠MDB>∠DMP=∠ACP,则这种情况不存在,舍去;
第三种情况,P为线段BA延长线上的“好点”,则∠ACP=∠MBA,
∴△PAC∽△PMB;
∴
∴BM垂直平分PC则BC=BP= ;
∴
∴综上所述,或或;
【点睛】
本题考查了信息迁移,三角形外角的性质,直角三角形斜边的中线等于斜边的一半,相似三角形的判定与性质及分类讨论的数学思想,理解“好点”的定义并能进行分类讨论是解答本题的关键.
18、(1)袋子中白球有2个;(2)见解析, .
【解析】
(1)首先设袋子中白球有x个,利用概率公式求即可得方程:,解此方程即可求得答案;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.
【详解】
解:(1)设袋子中白球有x个,
根据题意得:,
解得:x=2,
经检验,x=2是原分式方程的解,
∴袋子中白球有2个;
(2)画树状图得:
∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,
∴两次都摸到相同颜色的小球的概率为:.
【点睛】
此题考查了列表法或树状图法求概率.注意掌握方程思想的应用.注意概率=所求情况数与总情况数之比.
19、这辆车第二、三年的年折旧率为.
【解析】
设这辆车第二、三年的年折旧率为x,则第二年这就后的价格为30(1-20%)(1-x)元,第三年折旧后的而价格为30(1-20%)(1-x)2元,与第三年折旧后的价格为17.34万元建立方程求出其解即可.
【详解】
设这辆车第二、三年的年折旧率为,依题意,得
整理得,
解得,.
因为折旧率不可能大于1,所以不合题意,舍去.
所以
答:这辆车第二、三年的年折旧率为.
【点睛】
本题是一道折旧率问题,考查了列一元二次方程解实际问题的运用,解答本题时设出折旧率,表示出第三年的折旧后价格并运用价格为11.56万元建立方程是关键.
20、(1)证明见解析;(2)
【解析】
试题分析:(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;
(2)由已知条件得出sin∠DEF和sin∠AOE的值,利用对应角的三角函数值相等推出结论.
试题解析:(1)∵DC⊥OA, ∴∠1+∠3=90°, ∵BD为切线,∴OB⊥BD, ∴∠2+∠5=90°, ∵OA=OB, ∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB中, ∠4=∠5,∴DE=DB.
(2)作DF⊥AB于F,连接OE,∵DB=DE, ∴EF=BE=3,在 RT△DEF中,EF=3,DE=BD=5,EF=3 , ∴DF=∴sin∠DEF== , ∵∠AOE=∠DEF, ∴在RT△AOE中,sin∠AOE= ,
∵AE=6, ∴AO=.
【点睛】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.
21、 (1)详见解析;(2).
【解析】
(1)利用基本作图(作一个角等于已知角和作已知线段的垂直平分线)作出BD和EF;
(2)先证明四边形BEDF为菱形,再利用含30度的直角三角形三边的关系求出BF和CD,然后利用菱形的面积公式求解.
【详解】
(1)如图,DE、DF为所作;
(2)∵∠C=90°,∠A=30°,∴∠ABC=10°,AB=2BC=2.
∵BD为∠ABC的角平分线,∴∠DBC=∠EBD=30°.
∵EF垂直平分BD,∴FB=FD,EB=ED,∴∠FDB=∠DBC=30°,∠EDB=∠EBD=30°,∴DE∥BF,BE∥DF,∴四边形BEDF为平行四边形,而FB=FD,∴四边形BEDF为菱形.
∵∠DFC=∠FBD+∠FDB=30°+30°=10°,∴∠FDC=90°-10°=30°.在Rt△BDC中,∵BC=1,∠DBC=30°,∴DC=.在Rt△FCD中,∵∠FDC=30°,∴FC=2,∴FD=2FC=4,∴BF=FD=4,∴四边形BFDE的面积=4×2=8.
故答案为:8.
【点睛】
本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
22、 (1) k1=1,b=6(1)15(3)点M在第三象限,点N在第一象限
【解析】
试题分析:(1)把A(1,8)代入求得=8,把B(-4,m)代入求得m=-1,把A(1,8)、B(-4,-1)代入求得、b的值;(1)设直线y=1x+6与x轴的交点为C,可求得OC的长,根据S△ABC=S△AOC+S△BOC即可求得△AOB的面积;(3)由<可知有三种情况,①点M、N在第三象限的分支上,②点M、N在第一象限的分支上,③ M在第三象限,点N在第一象限,分类讨论把不合题意的舍去即可.
试题解析:解:(1)把A(1,8), B(-4,m)分别代入,得=8,m=-1.
∵A(1,8)、B(-4,-1)在图象上,
∴,
解得,.
(1)设直线y=1x+6与x轴的交点为C,当y=0时,x=-3,
∴OC=3
∴S△ABC=S△AOC+S△BOC=
(3)点M在第三象限,点N在第一象限.
①若<<0,点M、N在第三象限的分支上,则>,不合题意;
②若0<<,点M、N在第一象限的分支上,则>,不合题意;
③若<0<,M在第三象限,点N在第一象限,则<0<,符合题意.
考点:反比例函数与一次函数的交点坐标;用待定系数法求函数表达式;反比例函数的性质.
23、(1)y=﹣x2+2x+3,D点坐标为();(2)当m=时,△CDP的面积存在最大值,最大值为;(3)m的值为 或 或.
【解析】
(1)利用待定系数法求抛物线解析式和直线CD的解析式,然后解方程组得D点坐标;
(2)设P(m,-m2+2m+3),则E(m,-m+3),则PE=-m2+m,利用三角形面积公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函数的性质解决问题;
(3)讨论:当PC=PE时,m2+(-m2+2m+3-3)2=(-m2+m)2;当CP=CE时,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;当EC=EP时,m2+(-m+3-3)2=(-m2+m)2,然后分别解方程即可得到满足条件的m的值.
【详解】
(1)把A(﹣1,0),C(0,3)分别代入y=﹣x2+bx+c得,解得,
∴抛物线的解析式为y=﹣x2+2x+3;
把C(0,3)代入y=﹣x+n,解得n=3,
∴直线CD的解析式为y=﹣x+3,
解方程组,解得
或,
∴D点坐标为(,);
(2)存在.
设P(m,﹣m2+2m+3),则E(m,﹣m+3),
∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,
∴S△PCD=••(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,
当m=时,△CDP的面积存在最大值,最大值为;
(3)当PC=PE时,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;
当CP=CE时,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;
当EC=EP时,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,
综上所述,m的值为或或.
【点睛】
本题考核知识点:二次函数的综合应用. 解题关键点:灵活运用二次函数性质,运用数形结合思想.
24、1
【解析】
先提取公因式ab,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解.
【详解】
解:a3b+2a2b2+ab3
=ab(a2+2ab+b2)
=ab(a+b)2,
将a+b=3,ab=2代入得,ab(a+b)2=2×32=1.
故代数式a3b+2a2b2+ab3的值是1.
深圳市福田区达标名校2021-2022学年毕业升学考试模拟卷数学卷含解析: 这是一份深圳市福田区达标名校2021-2022学年毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,方程x2﹣3x+2=0的解是等内容,欢迎下载使用。
湖南省长沙市师大附中教育集团—重点达标名校2021-2022学年毕业升学考试模拟卷数学卷含解析: 这是一份湖南省长沙市师大附中教育集团—重点达标名校2021-2022学年毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列各式计算正确的是,下列计算正确的是,计算3a2-a2的结果是等内容,欢迎下载使用。
湖南省长沙市浏阳市2021-2022学年毕业升学考试模拟卷数学卷含解析: 这是一份湖南省长沙市浏阳市2021-2022学年毕业升学考试模拟卷数学卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列说法正确的是,下列各运算中,计算正确的是等内容,欢迎下载使用。