吉林省四平伊通县联考2021-2022学年中考数学模拟精编试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是( )
A. B. C. D.
2.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是( )
A. B. C. D.
3.将抛物线向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )
A. B. C. D.
4.一元二次方程的根是( )
A. B.
C. D.
5.关于x的一元二次方程x2﹣2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是( )
A. B.
C. D.
6.某校九年级一班全体学生2017年中招理化生实验操作考试的成绩统计如下表,根据表中的信息判断,下列结论中错误的是( )
成绩(分)
30
29
28
26
18
人数(人)
32
4
2
1
1
A.该班共有40名学生
B.该班学生这次考试成绩的平均数为29.4分
C.该班学生这次考试成绩的众数为30分
D.该班学生这次考试成绩的中位数为28分
7.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是( )
A. B. C.- D.
8.用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图不可能是( )
A. B. C. D.
9.如图,⊙O 是等边△ABC 的外接圆,其半径为 3,图中阴影部分的面积是( )
A.π B. C.2π D.3π
10.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有( )
①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h; ⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时
A.2个 B.3个 C.4个 D.5个
11.已知关于x的不等式组﹣1<2x+b<1的解满足0<x<2,则b满足的条件是( )
A.0<b<2 B.﹣3<b<﹣1 C.﹣3≤b≤﹣1 D.b=﹣1或﹣3
12.如图,BC平分∠ABE,AB∥CD,E是CD上一点,若∠C=35°,则∠BED的度数为( )
A.70° B.65° C.62° D.60°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.
14.在△ABC中,MN∥BC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为_____.
15.如图,若正五边形和正六边形有一边重合,则∠BAC=_____.
16.如图,点A1,B1,C1,D1,E1,F1分别是正六边形ABCDEF六条边的中点,连接AB1,BC1,CD1,DE1,EF1,FA1后得到六边形GHIJKL,则S六边形GHIJKI:S六边形ABCDEF的值为____.
17.我们知道,四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为_____.
18.如图,某景区的两个景点A、B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时、测得景点A的俯角为45°,景点B的俯角为30°,此时C到地面的距离CD为100米,则两景点A、B间的距离为__米(结果保留根号).
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)在眉山市樱花节期间,岷江二桥一端的空地上有一块矩形的标语牌ABCD(如图).已知标语牌的高AB=5m,在地面的点E处,测得标语牌点A的仰角为30°,在地面的点F处,测得标语牌点A的仰角为75°,且点E,F,B,C在同一直线上,求点E与点F之间的距离.(计算结果精确到0.1m,参考数据:≈1.41,≈1.73)
20.(6分)如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;分别写出B、C两点的对应点B′、C′的坐标;如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.
21.(6分)如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.当m=1,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.
22.(8分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是 .
23.(8分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;如果△ABC是等边三角形,试求这个一元二次方程的根.
24.(10分)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。求文具袋和圆规的单价。学校准备购买文具袋20个,圆规若干,文具店给出两种优惠方案:
方案一:购买一个文具袋还送1个圆规。
方案二:购买圆规10个以上时,超出10个的部分按原价的八折优惠,文具袋不打折.
①设购买面规m个,则选择方案一的总费用为______,选择方案二的总费用为______.
②若学校购买圆规100个,则选择哪种方案更合算?请说明理由.
25.(10分)先化简,再求值:1+÷(1﹣),其中x=2cos30°+tan45°.
26.(12分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;小王自网店开业起,最快在第几个月可还清10万元的无息贷款?
27.(12分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:
x/元
…
15
20
25
…
y/件
…
25
20
15
…
已知日销售量y是销售价x的一次函数.求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题.
【详解】
解:由题意可得,
y==,
当x=40时,y=6,
故选C.
【点睛】
本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键.
2、C
【解析】
列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.
【详解】
解:列表得:
A
B
C
D
E
A
AA
BA
CA
DA
EA
B
AB
BB
CB
DB
EB
C
AC
BC
CC
DC
EC
D
AD
BD
CD
DD
ED
E
AE
BE
CE
DE
EE
∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,
∴恰好选择从同一个口进出的概率为=,
故选C.
【点睛】
此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
3、D
【解析】
根据“左加右减、上加下减”的原则,
将抛物线向左平移1个单位所得直线解析式为:;
再向下平移3个单位为:.故选D.
4、D
【解析】
试题分析:此题考察一元二次方程的解法,观察发现可以采用提公因式法来解答此题.原方程可化为:,因此或,所以.故选D.
考点:一元二次方程的解法——因式分解法——提公因式法.
5、C
【解析】
由一元二次方程有实数根可知△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.
【详解】
∵关于x的一元二次方程x2−2x+k+2=0有实数根,
∴△=(−2)2−4(k+2)⩾0,
解得:k⩽−1,
在数轴上表示为:
故选C.
【点睛】
本题考查了一元二次方程根的判别式.根据一元二次方程根的情况利用根的判别式列出不等式是解题的关键.
6、D
【解析】
A.∵32+4+2+1+1=40(人),故A正确;
B. ∵(30×32+29×4+28×2+26+18)÷40=29.4(分),故B正确;
C. ∵成绩是30分的人有32人,最多,故C 正确;
D. 该班学生这次考试成绩的中位数为30分,故D错误;
7、A
【解析】
先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.
【详解】
∵∠ACB=90°,AC=BC=1,
∴AB=,
∴S扇形ABD=,
又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,
∴Rt△ADE≌Rt△ACB,
∴S阴影部分=S△ADE+S扇形ABD−S△ABC=S扇形ABD=,
故选A.
【点睛】
本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.
8、D
【解析】
分析:根据主视图和俯视图之间的关系可以得出答案.
详解: ∵主视图和俯视图的长要相等, ∴只有D选项中的长和俯视图不相等,故选D.
点睛:本题主要考查的就是三视图的画法,属于基础题型.三视图的画法为:主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等.
9、D
【解析】
根据等边三角形的性质得到∠A=60°,再利用圆周角定理得到∠BOC=120°,然后根据扇形的面积公式计算图中阴影部分的面积即可.
【详解】
∵△ABC 为等边三角形,
∴∠A=60°,
∴∠BOC=2∠A=120°,
∴图中阴影部分的面积= =3π.
故选D.
【点睛】
本题考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得∠BOC=120°是解决问题的关键.
10、B
【解析】
根据图形给出的信息求出两车的出发时间,速度等即可解答.
【详解】
解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.
②慢车0时出发,快车2时出发,故正确.
③快车4个小时走了276km,可求出速度为69km/h,错误.
④慢车6个小时走了276km,可求出速度为46km/h,正确.
⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.
⑥快车2时出发,14时到达,用了12小时,错误.
故答案选B.
【点睛】
本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.
11、C
【解析】
根据不等式的性质得出x的解集,进而解答即可.
【详解】
∵-1<2x+b<1
∴,
∵关于x的不等式组-1<2x+b<1的解满足0<x<2,
∴,
解得:-3≤b≤-1,
故选C.
【点睛】
此题考查解一元一次不等式组,关键是根据不等式的性质得出x的解集.
12、A
【解析】
由AB∥CD,根据两直线平行,内错角相等,即可求得∠ABC的度数,又由BC平分∠ABE,即可求得∠ABE的度数,继而求得答案.
【详解】
∵AB∥CD,∠C=35°,
∴∠ABC=∠C=35°,
∵BC平分∠ABE,
∴∠ABE=2∠ABC=70°,
∵AB∥CD,
∴∠BED=∠ABE=70°.
故选:A.
【点睛】
本题考查了平行线的性质,解题的关键是掌握平行线的性质进行解答.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
分析:设方程的另一个根为m,根据两根之和等于-,即可得出关于m的一元一次方程,解之即可得出结论.
详解:设方程的另一个根为m,
根据题意得:1+m=3,
解得:m=1.
故答案为1.
点睛:本题考查了根与系数的关系,牢记两根之和等于-是解题的关键.
14、1
【解析】
∵MN∥BC,
∴△AMN∽△ABC,
∴,即,
∴MN=1.
故答案为1.
15、132°
【解析】
解:∵正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,∴∠BAC=360°-108°-120°=132°.故答案为132°.
16、.
【解析】
设正六边形ABCDEF的边长为4a,则AA1=AF1=FF1=2a.求出正六边形的边长,根据S六边形GHIJKI:S六边形ABCDEF=()2,计算即可;
【详解】
设正六边形ABCDEF的边长为4a,则AA1=AF1=FF1=2a,
作A1M⊥FA交FA的延长线于M,
在Rt△AMA1中,∵∠MAA1=60°,
∴∠MA1A=30°,
∴AM=AA1=a,
∴MA1=AA1·cos30°=a,FM=5a,
在Rt△A1FM中,FA1=,
∵∠F1FL=∠AFA1,∠F1LF=∠A1AF=120°,
∴△F1FL∽△A1FA,
∴,
∴,
∴FL=a,F1L=a,
根据对称性可知:GA1=F1L=a,
∴GL=2a﹣a=a,
∴S六边形GHIJKI:S六边形ABCDEF=()2=,
故答案为:.
【点睛】
本题考查正六边形与圆,解直角三角形,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数解决问题.
17、(2,)
【解析】
过C作CH于H,由题意得2AO=AD’,所以∠D’AO=60°,AO=1,AD’=2,勾股定理知OD’=,BH=AO所以C’(2,).
故答案为(2,).
18、100+100
【解析】
【分析】由已知可得∠ACD=∠MCA=45°,∠B=∠NCB=30°,继而可得∠DCB=60°,从而可得AD=CD=100米,DB= 100米,再根据AB=AD+DB计算即可得.
【详解】∵MN//AB,∠MCA=45°,∠NCB=30°,
∴∠ACD=∠MCA=45°,∠B=∠NCB=30°,
∵CD⊥AB,∴∠CDA=∠CDB=90°,∠DCB=60°,
∵CD=100米,∴AD=CD=100米,DB=CD•tan60°=CD=100米,
∴AB=AD+DB=100+100(米),
故答案为:100+100.
【点睛】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,解题的关键是借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、7.3米
【解析】
:如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,推出AH=HF,设AH=HF=x,则EF=2x,EH=x,在Rt△AEB中,由∠E=30°,AB=5米,推出AE=2AB=10米,可得x+x =10,解方程即可.
【详解】
解:如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,
∴AH=HF,设AH=HF=x,则EF=2x,EH=x,
在Rt△AEB中,∵∠E=30°,AB=5米,
∴AE=2AB=10米,
∴x+x=10,
∴x=5﹣5,
∴EF=2x=10﹣10≈7.3米,
答:E与点F之间的距离为7.3米
【点睛】
本题考查的知识点是解直角三角形的应用-仰角俯角问题,解题的关键是熟练的掌握解直角三角形的应用-仰角俯角问题.
20、 (1)画图见解析(2)B'(-6,2)、C'(-4,-2)(3) M'(-2x,-2y)
【解析】
解:(1)
(2)以0点为位似中心在y轴的左侧将△OBC放大到两倍,则是对应点的坐标放大两倍,并将符号进行相应的改变,因为B(3,-1),则B’(-6,2) C(2,1),则C‘(-4,-2)
(3)因为点M (x,y)在△OBC内部,则它的对应点M′的坐标是M的坐标乘以2,并改变符号,即M’(-2x,-2y)
21、(1)①;②四边形是菱形,理由见解析;(2)四边形能是正方形,理由见解析,m+n=32.
【解析】
(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;
②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;
(2)先确定出B(1,),D(1,),进而求出点P的坐标,再求出A,C坐标,最后用AC=BD,即可得出结论.
【详解】
(1)①如图1,
,
反比例函数为,
当时,,
,
当时,
,
,
,
设直线的解析式为,
,
,
直线的解析式为;
②四边形是菱形,
理由如下:如图2,
由①知,,
轴,
,
点是线段的中点,
,
当时,由得,,
由得,,
,,
,
,
四边形为平行四边形,
,
四边形是菱形;
(2)四边形能是正方形,
理由:当四边形是正方形,记,的交点为,
,
当时,,
,,
,
,,,
,
,
.
【点睛】
此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.
22、(1)证明见解析;(2)1.
【解析】
【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;
(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.
【详解】(1)∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠COD=90°.
∵CE∥OD,DE∥OC,
∴四边形OCED是平行四边形,
又∠COD=90°,
∴平行四边形OCED是矩形;
(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.
∵四边形ABCD是菱形,
∴AC=2OC=1,BD=2OD=2,
∴菱形ABCD的面积为:AC•BD=×1×2=1,
故答案为1.
【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.
23、 (1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.
【解析】
试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;
(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;
(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.
试题解析:(1)△ABC是等腰三角形;
理由:∵x=﹣1是方程的根,
∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,
∴a+c﹣2b+a﹣c=0,
∴a﹣b=0,
∴a=b,
∴△ABC是等腰三角形;
(2)∵方程有两个相等的实数根,
∴(2b)2﹣4(a+c)(a﹣c)=0,
∴4b2﹣4a2+4c2=0,
∴a2=b2+c2,
∴△ABC是直角三角形;
(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:
2ax2+2ax=0,
∴x2+x=0,
解得:x1=0,x2=﹣1.
考点:一元二次方程的应用.
24、(1)文具袋的单价为15元,圆规单价为3元;(2)①方案一总费用为元,
方案二总费用为元;②方案一更合算.
【解析】
(1)设文具袋的单价为x元/个,圆规的单价为y元/个,根据“购买1个文具袋和2个圆规需21元;购买2个文具袋和3个圆规需39元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)根据总价=单价×数量结合两种优惠方案,设购买面规m个,分别求出选择方案一和选择方案二所需费用,然后代入m=100计算比较后即可得出结论.
【详解】
(1)设文具袋的单价为x元,圆规单价为y元。
由题意得解得
答:文具袋的单价为15元,圆规单价为3元。
(2)①设圆规m个,则方案一总费用为:元
方案二总费用元
故答案为:元;
②买圆规100个时,方案一总费用:元,
方案二总费用:元,
∴方案一更合算。
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
25、
【解析】
先化简分式,再计算x的值,最后把x的值代入化简后的分式,计算出结果.
【详解】
原式=
=1+
=1+
=
当x=2cos30°+tan45°
=2×+1
=+1时.
=
【点睛】
本题主要考查了分式的加减及锐角三角函数值.解决本题的关键是掌握分式的运算法则和运算顺序.
26、(1)当4≤x≤6时,w1=﹣x2+12x﹣35,当6≤x≤8时,w2=﹣x2+7x﹣23;(2)最快在第7个月可还清10万元的无息贷款.
【解析】
分析:(1)y(万件)与销售单价x是分段函数,根据待定系数法分别求直线AB和BC的解析式,又分两种情况,根据利润=(售价﹣成本)×销售量﹣费用,得结论;
(2)分别计算两个利润的最大值,比较可得出利润的最大值,最后计算时间即可求解.
详解:(1)设直线AB的解析式为:y=kx+b,
代入A(4,4),B(6,2)得:,
解得:,
∴直线AB的解析式为:y=﹣x+8,
同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=﹣x+5,
∵工资及其他费作为:0.4×5+1=3万元,
∴当4≤x≤6时,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,
当6≤x≤8时,w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;
(2)当4≤x≤6时,
w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,
∴当x=6时,w1取最大值是1,
当6≤x≤8时,
w2=﹣x2+7x﹣23=﹣(x﹣7)2+,
当x=7时,w2取最大值是1.5,
∴==6,
即最快在第7个月可还清10万元的无息贷款.
点睛:本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,利用数形结合的思想,是一道综合性较强的代数应用题,能力要求比较高.
27、();()此时每天利润为元.
【解析】
试题分析:(1) 根据题意用待定系数法即可得解;
(2)把x=35代入(1)中的解析式,得到销量,然后再乘以每件的利润即可得.
试题解析:()设,将,和,代入,得:,解得:,
∴;
()将代入()中函数表达式得:
,
∴利润(元),
答:此时每天利润为元.
2023年吉林省四平市伊通县五校联考中考数学五模试卷(含解析): 这是一份2023年吉林省四平市伊通县五校联考中考数学五模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年吉林省四平市伊通县中考数学四模试卷(含解析): 这是一份2023年吉林省四平市伊通县中考数学四模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年吉林省四平市伊通县中考数学四模试卷(含解析): 这是一份2023年吉林省四平市伊通县中考数学四模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。