搜索
    上传资料 赚现金
    英语朗读宝

    江苏省常州市名校2022年中考猜题数学试卷含解析

    江苏省常州市名校2022年中考猜题数学试卷含解析第1页
    江苏省常州市名校2022年中考猜题数学试卷含解析第2页
    江苏省常州市名校2022年中考猜题数学试卷含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省常州市名校2022年中考猜题数学试卷含解析

    展开

    这是一份江苏省常州市名校2022年中考猜题数学试卷含解析,共24页。试卷主要包含了答题时请按要求用笔,函数y=的自变量x的取值范围是,若2<<3,则a的值可以是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是 ( )

    A. B. C. D.
    2.下列命题是假命题的是(  )
    A.有一个外角是120°的等腰三角形是等边三角形
    B.等边三角形有3条对称轴
    C.有两边和一角对应相等的两个三角形全等
    D.有一边对应相等的两个等边三角形全等
    3.的算术平方根是( )
    A.9 B.±9 C.±3 D.3
    4.下列命题是真命题的是( )
    A.如实数a,b满足a2=b2,则a=b
    B.若实数a,b满足a<0,b<0,则ab<0
    C.“购买1张彩票就中奖”是不可能事件
    D.三角形的三个内角中最多有一个钝角
    5.如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带( )

    A.带③去 B.带②去 C.带①去 D.带①②去
    6.如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,,,那么下列式子中正确的是( )

    A. B. C. D.
    7.函数y=的自变量x的取值范围是( )
    A.x≠2 B.x<2 C.x≥2 D.x>2
    8.若2<<3,则a的值可以是(  )
    A.﹣7 B. C. D.12
    9.如图,△ABC中,DE∥BC,,AE=2cm,则AC的长是(  )

    A.2cm B.4cm C.6cm D.8cm
    10.方程5x+2y=-9与下列方程构成的方程组的解为的是(  )
    A.x+2y=1 B.3x+2y=-8
    C.5x+4y=-3 D.3x-4y=-8
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线与扇形OAB的边界总有两个公共点,则实数k的取值范围是
        .

    12.已知(x+y)2=25,(x﹣y)2=9,则x2+y2=_____.
    13.如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(-1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为___.

    14.2018年春节期间,反季游成为出境游的热门,中国游客青睐的目的地仍主要集中在温暖的东南亚地区.据调查发现2018年春节期间出境游约有700万人,游客目的地分布情况的扇形图如图所示,从中可知出境游东南亚地区的游客约有________万人.

    15.尺规作图:过直线外一点作已知直线的平行线.
    已知:如图,直线l与直线l外一点P.
    求作:过点P与直线l平行的直线.

    作法如下:
    (1)在直线l上任取两点A、B,连接AP、BP;
    (2)以点B为圆心,AP长为半径作弧,以点P为圆心,AB长为半径作弧,如图所示,两弧相交于点M;
    (3)过点P、M作直线;
    (4)直线PM即为所求.

    请回答:PM平行于l的依据是_____.
    16.如图,在△ABC中,AB=AC,以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD,若∠A=32°,则∠CDB的大小为_____度.

    三、解答题(共8题,共72分)
    17.(8分)给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且点P,O在直线MN的异侧),当∠MPN+∠MON=180°时,则称点P是线段MN关于点O的关联点.图1是点P为线段MN关于点O的关联点的示意图.

    在平面直角坐标系xOy中,⊙O的半径为1.
    (1)如图2,已知M(,),N(,﹣),在A(1,0),B(1,1),C(,0)三点中,是线段MN关于点O的关联点的是   ;
    (2)如图3,M(0,1),N(,﹣),点D是线段MN关于点O的关联点.
    ①∠MDN的大小为   ;
    ②在第一象限内有一点E(m,m),点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E的坐标;
    ③点F在直线y=﹣x+2上,当∠MFN≥∠MDN时,求点F的横坐标x的取值范围.
    18.(8分)为了解朝阳社区岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:
    求参与问卷调查的总人数.补全条形统计图.该社区中岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.
    19.(8分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.
    求证:四边形ABCD是菱形;若AB=,BD=2,求OE的长.
    20.(8分)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.求证:△ACB≌△BDA;若∠ABC=36°,求∠CAO度数.

    21.(8分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.

    (1)求二次函数的表达式;
    (2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;
    (3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
    22.(10分)先化简,再求值:,其中x=.
    23.(12分)如图,AB是⊙O的直径,弧CD⊥AB,垂足为H,P为弧AD上一点,连接PA、PB,PB交CD于E.
    (1)如图(1)连接PC、CB,求证:∠BCP=∠PED;
    (2)如图(2)过点P作⊙O的切线交CD的延长线于点E,过点A向PF引垂线,垂足为G,求证:∠APG=∠F;
    (3)如图(3)在图(2)的条件下,连接PH,若PH=PF,3PF=5PG,BE=2,求⊙O的直径AB.

    24. “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.

    (1)求与之间的函数关系式;
    (2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
    (3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    观察所给的几何体,根据三视图的定义即可解答.
    【详解】
    左视图有2列,每列小正方形数目分别为2,1.
    故选A.
    【点睛】
    本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
    2、C
    【解析】
    解:A. 外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;
    B. 等边三角形有3条对称轴,故B选项正确;
    C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;
    D.利用SSS.可以判定三角形全等.故D选项正确;
    故选C.
    3、D
    【解析】
    根据算术平方根的定义求解.
    【详解】
    ∵=9,
    又∵(±1)2=9,
    ∴9的平方根是±1,
    ∴9的算术平方根是1.
    即的算术平方根是1.
    故选:D.
    【点睛】
    考核知识点:算术平方根.理解定义是关键.
    4、D
    【解析】
    A. 两个数的平方相等,这两个数不一定相等,有正负之分即可判断
    B. 同号相乘为正,异号相乘为负,即可判断
    C. “购买1张彩票就中奖”是随机事件即可判断
    D. 根据三角形内角和为180度,三个角中不可能有两个以上钝角即可判断
    【详解】
    如实数a,b满足a2=b2,则a=±b,A是假命题;
    数a,b满足a<0,b<0,则ab>0,B是假命题;
    若实“购买1张彩票就中奖”是随机事件,C是假命题;
    三角形的三个内角中最多有一个钝角,D是真命题;
    故选:D
    【点睛】
    本题考查了命题与定理,根据实际判断是解题的关键
    5、A
    【解析】
    第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.
    【详解】
    ③中含原三角形的两角及夹边,根据ASA公理,能够唯一确定三角形.其它两个不行.
    故选:A.
    【点睛】
    此题主要考查全等三角形的运用,熟练掌握,即可解题.
    6、A
    【解析】
    分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.
    详解:

    由折叠得:∠A=∠A',
    ∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',
    ∵∠A=α,∠CEA′=β,∠BDA'=γ,
    ∴∠BDA'=γ=α+α+β=2α+β,
    故选A.
    点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.
    7、D
    【解析】
    根据被开放式的非负性和分母不等于零列出不等式即可解题.
    【详解】
    解:∵函数y=有意义,
    ∴x-20,
    即x>2
    故选D
    【点睛】
    本题考查了根式有意义的条件,属于简单题,注意分母也不能等于零是解题关键.
    8、C
    【解析】
    根据已知条件得到4<a-2<9,由此求得a的取值范围,易得符合条件的选项.
    【详解】
    解:∵2<<3,
    ∴4<a-2<9,
    ∴6<a<1.
    又a-2≥0,即a≥2.
    ∴a的取值范围是6<a<1.
    观察选项,只有选项C符合题意.
    故选C.
    【点睛】
    考查了估算无理数的大小,估算无理数大小要用夹逼法.
    9、C
    【解析】
    由∥可得△ADE∽△ABC,再根据相似三角形的性质即可求得结果.
    【详解】
    ∵∥
    ∴△ADE∽△ABC


    ∴AC=6cm
    故选C.
    考点:相似三角形的判定和性质
    点评:解答本题的关键是熟练掌握相似三角形的对应边成比例,注意对应字母在对应位置上.
    10、D
    【解析】
    试题分析:将x与y的值代入各项检验即可得到结果.
    解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣1.
    故选D.
    点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、-2<k<。
    【解析】
    由图可知,∠AOB=45°,∴直线OA的解析式为y=x,
    联立,消掉y得,,
    由解得,.
    ∴当时,抛物线与OA有一个交点,此交点的横坐标为1.
    ∵点B的坐标为(2,0),∴OA=2,∴点A的坐标为().
    ∴交点在线段AO上.
    当抛物线经过点B(2,0)时,,解得k=-2.
    ∴要使抛物线与扇形OAB的边界总有两个公共点,实数k的取值范围是-2<k<.
    【详解】
    请在此输入详解!
    12、17
    【解析】
    先利用完全平方公式展开,然后再求和.
    【详解】
    根据(x+y)2=25,x2+y2+2xy=25;(x﹣y)2=9, x2+y2-2xy=9,所以x2+y2=17.
    【点睛】
    (1)完全平方公式:.
    (2)平方差公式:(a+b)(a-b)=.
    (3)常用等价变形:
    ,
    ,
    .
    13、(3,2)
    【解析】
    根据平移的性质即可得到结论.
    【详解】
    ∵将线段AB沿x轴的正方向平移,若点B的对应点B′的坐标为(2,0),
    ∵-1+3=2,
    ∴0+3=3
    ∴A′(3,2),
    故答案为:(3,2)
    【点睛】
    本题考查了坐标与图形变化-平移.解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.
    14、1
    【解析】
    分析:用总人数乘以样本中出境游东南亚地区的百分比即可得.
    详解:出境游东南亚地区的游客约有700×(1﹣16%﹣15%﹣11%﹣13%)=700×45%=1(万).故答案为1.
    点睛:本题主要考查扇形统计图与样本估计总体,解题的关键是掌握各项目的百分比之和为1,利用样本估计总体思想的运用.
    15、两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.
    【解析】
    利用画法得到PM=AB,BM=PA,则利用平行四边形的判定方法判断四边形ABMP为平行四边形,然后根据2平行四边形的性质得到PM∥AB.
    【详解】
    解:由作法得PM=AB,BM=PA,
    ∴四边形ABMP为平行四边形,
    ∴PM∥AB.
    故答案为:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.
    【点睛】
    本题考查基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的判定与性质.
    16、1
    【解析】
    根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=1°.
    【详解】
    ∵AB=AC,∠A=32°,
    ∴∠ABC=∠ACB=74°,
    又∵BC=DC,
    ∴∠CDB=∠CBD=∠ACB=1°,
    故答案为1.
    【点睛】
    本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.

    三、解答题(共8题,共72分)
    17、(1)C;(2)①60;②E(,1);③点F的横坐标x的取值范围≤xF≤.
    【解析】
    (1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,为半径的圆上,所以点C满足条件;
    (2)①如图3-1中,作NH⊥x轴于H.求出∠MON的大小即可解决问题;
    ②如图3-2中,结论:△MNE是等边三角形.由∠MON+∠MEN=180°,推出M、O、N、E四点共圆,可得∠MNE=∠MOE=60°,由此即可解决问题;
    ③如图3-3中,由②可知,△MNE是等边三角形,作△MNE的外接圆⊙O′,首先证明点E在直线y=-x+2上,设直线交⊙O′于E、F,可得F(,),观察图形即可解决问题;
    【详解】
    (1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,为半径的圆上,所以点C满足条件,
    故答案为C.
    (2)①如图3-1中,作NH⊥x轴于H.

    ∵N(,-),
    ∴tan∠NOH=,
    ∴∠NOH=30°,
    ∠MON=90°+30°=120°,
    ∵点D是线段MN关于点O的关联点,
    ∴∠MDN+∠MON=180°,
    ∴∠MDN=60°.
    故答案为60°.
    ②如图3-2中,结论:△MNE是等边三角形.

    理由:作EK⊥x轴于K.
    ∵E(,1),
    ∴tan∠EOK=,
    ∴∠EOK=30°,
    ∴∠MOE=60°,
    ∵∠MON+∠MEN=180°,
    ∴M、O、N、E四点共圆,
    ∴∠MNE=∠MOE=60°,
    ∵∠MEN=60°,
    ∴∠MEN=∠MNE=∠NME=60°,
    ∴△MNE是等边三角形.
    ③如图3-3中,由②可知,△MNE是等边三角形,作△MNE的外接圆⊙O′,

    易知E(,1),
    ∴点E在直线y=-x+2上,设直线交⊙O′于E、F,可得F(,),
    观察图象可知满足条件的点F的横坐标x的取值范围≤xF≤.
    【点睛】
    此题考查一次函数综合题,直线与圆的位置关系,等边三角形的判定和性质,锐角三角函数,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.
    18、(1)参与问卷调查的总人数为500人;(2)补全条形统计图见解析;(3)这些人中最喜欢微信支付方式的人数约为2800人.
    【解析】
    (1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论;
    (2)根据喜欢现金支付的人数(41~60岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例-15,即可求出喜欢现金支付的人数(41~60岁),再将条形统计图补充完整即可得出结论;
    (3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.
    【详解】
    (1)(人.
    答:参与问卷调查的总人数为500人.
    (2)(人.
    补全条形统计图,如图所示.

    (3)(人.
    答:这些人中最喜欢微信支付方式的人数约为2800人.
    【点睛】
    本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(41~60岁);(3)根据样本的比例×总人数,估算出喜欢微信支付方式的人数.
    19、(1)见解析;(1)OE=1.
    【解析】
    (1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;
    (1)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.
    【详解】
    解:(1)∵AB∥CD,
    ∴∠OAB=∠DCA,
    ∵AC为∠DAB的平分线,
    ∴∠OAB=∠DAC,
    ∴∠DCA=∠DAC,
    ∴CD=AD=AB,
    ∵AB∥CD,
    ∴四边形ABCD是平行四边形,
    ∵AD=AB,
    ∴▱ABCD是菱形;
    (1)∵四边形ABCD是菱形,
    ∴OA=OC,BD⊥AC,∵CE⊥AB,
    ∴OE=OA=OC,
    ∵BD=1,
    ∴OB=BD=1,
    在Rt△AOB中,AB=,OB=1,
    ∴OA==1,
    ∴OE=OA=1.
    【点睛】
    此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键
    20、(1)证明见解析(2)18°
    【解析】
    (1)根据HL证明Rt△ABC≌Rt△BAD即可;(2)利用全等三角形的性质及直角三角形两锐角互余的性质求解即可.
    【详解】
    (1)证明:∵∠D=∠C=90°,
    ∴△ABC和△BAD都是Rt△,
    在Rt△ABC和Rt△BAD中,

    ∴Rt△ABC≌Rt△BAD(HL);
    (2)∵Rt△ABC≌Rt△BAD,
    ∴∠ABC=∠BAD=36°,
    ∵∠C=90°,
    ∴∠BAC=54°,
    ∴∠CAO=∠CAB﹣∠BAD=18°.
    【点睛】
    本题考查了全等三角形的判定与性质,判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,“HL”.
    21、(1)二次函数的表达式为:y=x2﹣4x+3;(2)点P的坐标为:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
    【解析】
    (1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;
    (2)先求出点B的坐标,再根据勾股定理求得BC的长,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;分别根据这三种情况求出点P的坐标;
    (3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化为顶点式,根据二次函数的性质即可得△MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
    【详解】
    解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,

    解得:b=﹣4,c=3,
    ∴二次函数的表达式为:y=x2﹣4x+3;
    (2)令y=0,则x2﹣4x+3=0,
    解得:x=1或x=3,
    ∴B(3,0),
    ∴BC=3,
    点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,
    ①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3
    ∴P1(0,3+3),P2(0,3﹣3);
    ②当PB=PC时,OP=OB=3,
    ∴P3(0,-3);
    ③当BP=BC时,
    ∵OC=OB=3
    ∴此时P与O重合,
    ∴P4(0,0);
    综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);

    (3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,
    ∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,
    当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.

    22、1+
    【解析】
    先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.
    【详解】
    解:原式



    当时,
    原式=
    【点睛】
    考查分式的混合运算,掌握运算顺序是解题的关键.
    23、(1)见解析;(2)见解析;(3)AB=1
    【解析】
    (1)由垂径定理得出∠CPB=∠BCD,根据∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED即可得证;
    (2)连接OP,知OP=OB,先证∠FPE=∠FEP得∠F+2∠FPE=180°,再由∠APG+∠FPE=90得2∠APG+2∠FPE=180°,据此可得2∠APG=∠F,据此即可得证;
    (3)连接AE,取AE中点N,连接HN、PN,过点E作EM⊥PF,先证∠PAE=∠F,由tan∠PAE=tan∠F得,再证∠GAP=∠MPE,由sin∠GAP=sin∠MPE得,从而得出,即MF=GP,由3PF=5PG即,可设PG=3k,得PF=5k、MF=PG=3k、PM=2k,由∠FPE=∠PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,证∠PEM=∠ABP得BP=3k,继而可得BE=k=2,据此求得k=2,从而得出AP、BP的长,利用勾股定理可得答案.
    【详解】
    证明:(1)∵AB是⊙O的直径且AB⊥CD,
    ∴∠CPB=∠BCD,
    ∴∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED,
    ∴∠BCP=∠PED;
    (2)连接OP,则OP=OB,

    ∴∠OPB=∠OBP,
    ∵PF是⊙O的切线,
    ∴OP⊥PF,则∠OPF=90°,
    ∠FPE=90°﹣∠OPE,
    ∵∠PEF=∠HEB=90°﹣∠OBP,
    ∴∠FPE=∠FEP,
    ∵AB是⊙O的直径,
    ∴∠APB=90°,
    ∴∠APG+∠FPE=90°,
    ∴2∠APG+2∠FPE=180°,
    ∵∠F+∠FPE+∠PEF=180°,
    ∵∠F+2∠FPE=180°
    ∴2∠APG=∠F,
    ∴∠APG= ∠F;
    (3)连接AE,取AE中点N,连接HN、PN,过点E作EM⊥PF于M,

    由(2)知∠APB=∠AHE=90°,
    ∵AN=EN,
    ∴A、H、E、P四点共圆,
    ∴∠PAE=∠PHF,
    ∵PH=PF,
    ∴∠PHF=∠F,
    ∴∠PAE=∠F,
    tan∠PAE=tan∠F,
    ∴,
    由(2)知∠APB=∠G=∠PME=90°,
    ∴∠GAP=∠MPE,
    ∴sin∠GAP=sin∠MPE,
    则,
    ∴,
    ∴MF=GP,
    ∵3PF=5PG,
    ∴,
    设PG=3k,则PF=5k,MF=PG=3k,PM=2k
    由(2)知∠FPE=∠PEF,
    ∴PF=EF=5k,
    则EM=4k,
    ∴tan∠PEM=,tan∠F=,
    ∴tan∠PAE=,
    ∵PE=,
    ∴AP=k,
    ∵∠APG+∠EPM=∠EPM+∠PEM=90°,
    ∴∠APG=∠PEM,
    ∵∠APG+∠OPA=∠ABP+∠BAP=90°,且∠OAP=∠OPA,
    ∴∠APG=∠ABP,
    ∴∠PEM=∠ABP,
    则tan∠ABP=tan∠PEM,即,
    ∴,
    则BP=3k,
    ∴BE=k=2,
    则k=2,
    ∴AP=3、BP=6,
    根据勾股定理得,AB=1.
    【点睛】
    本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、四点共圆条件、相似三角形的判定与性质、三角函数的应用等知识点.
    24、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.
    【解析】
    (1)可用待定系数法来确定y与x之间的函数关系式;
    (2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;
    (3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.
    【详解】
    (1)由题意得: .
    故y与x之间的函数关系式为:y=-10x+700,
    (2)由题意,得
    -10x+700≥240,
    解得x≤46,
    设利润为w=(x-30)•y=(x-30)(-10x+700),

    w=-10x2+1000x-21000=-10(x-50)2+4000,
    ∵-10<0,
    ∴x<50时,w随x的增大而增大,
    ∴x=46时,w大=-10(46-50)2+4000=3840,
    答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;
    (3)w-150=-10x2+1000x-21000-150=3600,
    -10(x-50)2=-250,
    x-50=±5,
    x1=55,x2=45,
    如图所示,由图象得:
    当45≤x≤55时,捐款后每天剩余利润不低于3600元.
    【点睛】
    此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.

    相关试卷

    江苏省徐州市丰县市级名校2022年中考猜题数学试卷含解析:

    这是一份江苏省徐州市丰县市级名校2022年中考猜题数学试卷含解析,共16页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。

    江苏省苏州市区重点名校2022年中考猜题数学试卷含解析:

    这是一份江苏省苏州市区重点名校2022年中考猜题数学试卷含解析,共20页。

    江苏省句容市重点名校2022年中考猜题数学试卷含解析:

    这是一份江苏省句容市重点名校2022年中考猜题数学试卷含解析,共19页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map