吉林省长春市双阳区2021-2022学年中考冲刺卷数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数的图象与x轴有两个不同交点的概率是( ).
A. B. C. D.
2.观察下列图形,则第n个图形中三角形的个数是( )
A.2n+2 B.4n+4 C.4n﹣4 D.4n
3.一、单选题
如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为( )
A.5 B.4 C.3 D.2
4.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )
A. B.
C. D.
5.如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时, 那么下列结论成立的是( ).
A.线段EF的长逐渐增大 B.线段EF的长逐渐减少
C.线段EF的长不变 D.线段EF的长不能确定
6.如图1,点P从△ABC的顶点A出发,沿A﹣B﹣C匀速运动,到点C停止运动.点P运动时,线段AP的长度y与运动时间x的函数关系如图2所示,其中D为曲线部分的最低点,则△ABC的面积是( )
A.10 B.12 C.20 D.24
7.有两组数据,A组数据为2、3、4、5、6;B组数据为1、7、3、0、9,这两组数据的( )
A.中位数相等 B.平均数不同 C.A组数据方差更大 D.B组数据方差更大
8.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是( )
A.相交 B.相切 C.相离 D.不能确定
9.计算4+(﹣2)2×5=( )
A.﹣16 B.16 C.20 D.24
10.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是( )
A.27° B.34° C.36° D.54°
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为 .
12.用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:
第4个图案有白色地面砖______块;第n个图案有白色地面砖______块.
13.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为 .
14.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为_____.
15.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是_____.
16.抛物线y=2x2+4x﹣2的顶点坐标是_______________.
17.若不等式(a﹣3)x>1的解集为,则a的取值范围是_____.
三、解答题(共7小题,满分69分)
18.(10分)石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.设每件童装降价x元时,每天可销售______ 件,每件盈利______ 元;(用x的代数式表示)每件童装降价多少元时,平均每天赢利1200元.要想平均每天赢利2000元,可能吗?请说明理由.
19.(5分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HF与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米).
(参考数据:cos75°≈0.2588, sin75°≈0.9659,tan75°≈3.732,,)
20.(8分)“不出城郭而获山水之怡,身居闹市而有林泉之致”,合肥市某区不断推进“园林城市”建设,今春种植了四类花苗,园林部门从种植的这批花苗中随机抽取了2000株,将四类花苗的种植株数绘制成扇形统计图,将四类花苗的成活株数绘制成条形统图.经统计这批2000株的花苗总成活率为90%,其中玉兰和月季的成活率较高,根据图表中的信息解答下列问题:扇形统计图中玉兰所对的圆心角为 ,并补全条形统计图;该区今年共种植月季8000株,成活了约 株;园林部门决定明年从这四类花苗中选两类种植,请用列表法或画树状图求恰好选到成活率较高的两类花苗的概率.
21.(10分)如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:
(1)直线DC是⊙O的切线;
(2)AC2=2AD•AO.
22.(10分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.
23.(12分)在平面直角坐标系中,函数()的图象经过点(4,1),直线与图象交于点,与轴交于点.求的值;横、纵坐标都是整数的点叫做整点.记图象在点,之间的部分与线段,,围成的区域(不含边界)为.
①当时,直接写出区域内的整点个数;
②若区域内恰有4个整点,结合函数图象,求的取值范围.
24.(14分)如图,点在的直径的延长线上,点在上,且AC=CD,∠ACD=120°.求证:是的切线;若的半径为2,求图中阴影部分的面积.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
分析:本题可先列出出现的点数的情况,因为二次图象开口向上,要使图象与x轴有两个不同的交点,则最低点要小于0,即4n-m2<0,再把m、n的值一一代入检验,看是否满足.最后把满足的个数除以掷骰子可能出现的点数的总个数即可.
解答:解:掷骰子有6×6=36种情况.
根据题意有:4n-m2<0,
因此满足的点有:n=1,m=3,4,5,6,
n=2,m=3,4,5,6,
n=3,m=4,5,6,
n=4,m=5,6,
n=5,m=5,6,
n=6,m=5,6,
共有17种,
故概率为:17÷36=.
故选C.
点评:本题考查的是概率的公式和二次函数的图象问题.要注意画出图形再进行判断,找出满足条件的点.
2、D
【解析】
试题分析:由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.
解:根据给出的3个图形可以知道:
第1个图形中三角形的个数是4,
第2个图形中三角形的个数是8,
第3个图形中三角形的个数是12,
从而得出一般的规律,第n个图形中三角形的个数是4n.
故选D.
考点:规律型:图形的变化类.
3、B
【解析】
根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.
【详解】
解:∵△ABC绕点A顺时针旋转 60°得到△AED,
∴AB=AE,∠BAE=60°,
∴△AEB是等边三角形,
∴BE=AB,
∵AB=1,
∴BE=1.
故选B.
【点睛】
本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.
4、D
【解析】
找到从左面看到的图形即可.
【详解】
从左面上看是D项的图形.故选D.
【点睛】
本题考查三视图的知识,左视图是从物体左面看到的视图.
5、C
【解析】
因为R不动,所以AR不变.根据三角形中位线定理可得EF= AR,因此线段EF的长不变.
【详解】
如图,连接AR,
∵E、F分别是AP、RP的中点,
∴EF为△APR的中位线,
∴EF= AR,为定值.
∴线段EF的长不改变.
故选:C.
【点睛】
本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
6、B
【解析】
过点A作AM⊥BC于点M,由题意可知当点P运动到点M时,AP最小,此时长为4,
观察图象可知AB=AC=5,
∴BM==3,∴BC=2BM=6,
∴S△ABC==12,
故选B.
【点睛】本题考查了动点问题的函数图象,根据已知和图象能确定出AB、AC的长,以及点P运动到与BC垂直时最短是解题的关键.
7、D
【解析】
分别求出两组数据的中位数、平均数、方差,比较即可得出答案.
【详解】
A组数据的中位数是:4,平均数是:(2+3+4+5+6) ÷5=4,
方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2] ÷5=2;
B组数据的中位数是:3,平均数是:(1+7+3+0+9) ÷5=4,
方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2] ÷5=12;
∴两组数据的中位数不相等,平均数相等,B组方差更大.
故选D.
【点睛】
本题考查了中位数、平均数、方差的计算,熟练掌握中位数、平均数、方差的计算方法是解答本题的关键.
8、A
【解析】
试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.
解:∵⊙O的半径为3,圆心O到直线L的距离为2,
∵3>2,即:d<r,
∴直线L与⊙O的位置关系是相交.
故选A.
考点:直线与圆的位置关系.
9、D
【解析】分析:根据有理数的乘方、乘法和加法可以解答本题.
详解:4+(﹣2)2×5
=4+4×5
=4+20
=24,
故选:D.
点睛:本题考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.
10、C
【解析】
由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°.
【详解】
解:∵AB与⊙O相切于点A,
∴OA⊥BA.
∴∠OAB=90°.
∵∠CDA=27°,
∴∠BOA=54°.
∴∠B=90°-54°=36°.
故选C.
考点:切线的性质.
二、填空题(共7小题,每小题3分,满分21分)
11、7
【解析】
试题分析:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC.
∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.
∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.
又∵∠B=∠C=60°,∴△ABD∽△DCE.
∴,即.
∴.
12、18块 (4n+2)块.
【解析】
由已知图形可以发现:前三个图形中白色地砖的块数分别为:6,10,14,所以可以发现每一个图形都比它前一个图形多4个白色地砖,所以可以得到第n个图案有白色地面砖(4n+2)块.
【详解】
解:第1个图有白色块4+2,第2图有4×2+2,第3个图有4×3+2,
所以第4个图应该有4×4+2=18块,
第n个图应该有(4n+2)块.
【点睛】
此题考查了平面图形,主要培养学生的观察能力和空间想象能力.
13、1
【解析】
试题分析:先求出m2﹣2m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.
解:由m2﹣2m﹣1=0得m2﹣2m=1,
所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=1.
故答案为1.
考点:代数式求值.
14、﹣1
【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可.
【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,
整理得k2+1k=0,解得k1=0,k2=﹣1,
因为k≠0,
所以k的值为﹣1.
故答案为:﹣1.
【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
15、(2n﹣1,2n﹣1).
【解析】
解:∵y=x-1与x轴交于点A1,
∴A1点坐标(1,0),
∵四边形A1B1C1O是正方形,
∴B1坐标(1,1),
∵C1A2∥x轴,
∴A2坐标(2,1),
∵四边形A2B2C2C1是正方形,
∴B2坐标(2,3),
∵C2A3∥x轴,
∴A3坐标(4,3),
∵四边形A3B3C3C2是正方形,
∴B3(4,7),
∵B1(20,21-1),B2(21,22-1),B3(22,23-1),…,
∴Bn坐标(2n-1,2n-1).
故答案为(2n-1,2n-1).
16、(﹣1,﹣1)
【解析】
利用顶点的公式首先求得横坐标,然后把横坐标的值代入解析式即可求得纵坐标.
【详解】
x=-=-1,
把x=-1代入得:y=2-1-2=-1.
则顶点的坐标是(-1,-1).
故答案是:(-1,-1).
【点睛】
本题考查了二次函数的顶点坐标的求解方法,可以利用配方法求解,也可以利用公式法求解.
17、.
【解析】
∵(a−3)x>1的解集为x<,
∴不等式两边同时除以(a−3)时不等号的方向改变,
∴a−3<0,
∴a<3.
故答案为a<3.
点睛:本题考查了不等式的性质:在不等式的两边同时乘以或除以同一个负数不等号的方向改变.本题解不等号时方向改变,所以a-3小于0.
三、解答题(共7小题,满分69分)
18、(1)(20+2x),(40﹣x);(2)每件童装降价20元或10元,平均每天赢利1200元;(3)不可能做到平均每天盈利2000元.
【解析】
(1)、根据销售量=原销售量+因价格下降而增加的数量;每件利润=原售价-进价-降价,列式即可;
(2)、根据总利润=单件利润×数量,列出方程即可;(3)、根据(2)中的相关关系方程,判断方程是否有实数根即可.
【详解】
(1)、设每件童装降价x元时,每天可销售20+2x件,每件盈利40-x元,
故答案为(20+2x),(40-x);
(2)、根据题意可得:(20+2x)(40-x)=1200,
解得:
即每件童装降价10元或20元时,平均每天盈利1200元;
(3)、(20+2x)(40-x)=2000, ,
∵此方程无解,
∴不可能盈利2000元.
【点睛】
本题主要考查的是一元二次方程的实际应用问题,属于中等难度题型.解决这个问题的关键就是要根据题意列出方程.
19、3.05米.
【解析】
延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.
【详解】
延长FE交CB的延长线于M,过A作AG⊥FM于G,
在Rt△ABC中,tan∠ACB=,
∴AB=BC•tan75°=0.60×3.732=2.2392,
∴GM=AB=2.2392,
在Rt△AGF中,∵∠FAG=∠FHD=60°,sin∠FAG=,
∴sin60°=,
∴FG=2.165,
∴DM=FG+GM﹣DF≈3.05米.
答:篮框D到地面的距离是3.05米.
考点:解直角三角形的应用.
20、 (1)72°,见解析;(2)7280;(3).
【解析】
(1)根据题意列式计算,补全条形统计图即可;
(2)根据题意列式计算即可;
(3)画树状图得出所有等可能的情况数,找出选到成活率较高的两类树苗的情况数,即可求出所求的概率.
【详解】
(1)扇形统计图中玉兰所对的圆心角为360°×(1-40%-15%-25%)=72°
月季的株数为2000×90%-380-422-270=728(株),
补全条形统计图如图所示:
(2)月季的成活率为
所以月季成活株数为8000×91%=7280(株).
故答案为:7280.
(3)由题意知,成活率较高的两类花苗是玉兰和月季,玉兰、月季、桂花、腊梅分别用A、B、C、D表示,画树状图如下:
所有等可能的情况有12种,其中恰好选到成活率较高的两类花苗有2种.
∴P(恰好选到成活率较高的两类花苗)
【点睛】
此题主要考查了条形统计图以及扇形统计图的应用,根据统计图得出正确信息是解题关键.
21、(1)证明见解析.(2)证明见解析.
【解析】
分析:(1)连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证;
(2)连接BC,证△DAC∽△CAB即可得.
详解:(1)如图,连接OC,
∵OA=OC,
∴∠OAC=∠OCA,
∵AC平分∠DAB,
∴∠OAC=∠DAC,
∴∠DAC=∠OCA,
∴OC∥AD,
又∵AD⊥CD,
∴OC⊥DC,
∴DC是⊙O的切线;
(2)连接BC,
∵AB为⊙O的直径,
∴AB=2AO,∠ACB=90°,
∵AD⊥DC,
∴∠ADC=∠ACB=90°,
又∵∠DAC=∠CAB,
∴△DAC∽△CAB,
∴,即AC2=AB•AD,
∵AB=2AO,
∴AC2=2AD•AO.
点睛:本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质.
22、.
【解析】
试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章,再利用概率公式求解即可求得答案.
试题解析:解:如图:
所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为=.
点睛:本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
23、(1)4;(2)①3个.(1,0),(2,0),(3,0).②或.
【解析】
分析:(1)根据点(4,1)在()的图象上,即可求出的值;
(2)①当时,根据整点的概念,直接写出区域内的整点个数即可.
②分.当直线过(4,0)时,.当直线过(5,0)时,.当直线过(1,2)时,.当直线过(1,3)时四种情况进行讨论即可.
详解:(1)解:∵点(4,1)在()的图象上.
∴,
∴.
(2)① 3个.(1,0),(2,0),(3,0).
② .当直线过(4,0)时:,解得
.当直线过(5,0)时:,解得
.当直线过(1,2)时:,解得
.当直线过(1,3)时:,解得
∴综上所述:或.
点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.
24、(1)见解析
(2)图中阴影部分的面积为π.
【解析】
(1)连接OC.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;
(2)先根据直角三角形中30°的锐角所对的直角边是斜边的一半求出OD,然后根据勾股定理求出CD,则阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.
【详解】
(1)证明:连接OC.
∵AC=CD,∠ACD=120°,
∴∠A=∠D=30°.
∵OA=OC,
∴∠2=∠A=30°.
∴∠OCD=∠ACD-∠2=90°,
即OC⊥CD,
∴CD是⊙O的切线;
(2)解:∠1=∠2+∠A=60°.
∴S扇形BOC==.
在Rt△OCD中,∠D=30°,
∴OD=2OC=4,
∴CD==.
∴SRt△OCD=OC×CD=×2×=.
∴图中阴影部分的面积为:-.
2024年吉林省长春市双阳区中考一模数学试题: 这是一份2024年吉林省长春市双阳区中考一模数学试题,共1页。
2023年吉林省长春市双阳区中考一模数学试题(含答案): 这是一份2023年吉林省长春市双阳区中考一模数学试题(含答案),共11页。试卷主要包含了分解因式等内容,欢迎下载使用。
吉林省长春市双阳区重点达标名校2021-2022学年中考联考数学试卷含解析: 这是一份吉林省长春市双阳区重点达标名校2021-2022学年中考联考数学试卷含解析,共23页。试卷主要包含了下列计算正确的有个等内容,欢迎下载使用。