江苏省南京溧水区四校联考2022年中考数学仿真试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图所示的两个四边形相似,则α的度数是( )
A.60° B.75° C.87° D.120°
2.二次函数(a、b、c是常数,且a≠0)的图象如图所示,下列结论错误的是( )
A.4ac<b2 B.abc<0 C.b+c>3a D.a<b
3.如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a﹣b+c,则P的取值范围是( )
A.﹣4<P<0 B.﹣4<P<﹣2 C.﹣2<P<0 D.﹣1<P<0
4.在平面直角坐标系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017 D2017的边长是( )
A.()2016 B.()2017 C.()2016 D.()2017
5.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为( )
A. B.2 C. D.
6.已知,如图,AB//CD,∠DCF=100°,则∠AEF的度数为 ( )
A.120° B.110° C.100° D.80°
7.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是( )
用水量x(吨)
3
4
5
6
7
频数
1
2
5
4﹣x
x
A.平均数、中位数 B.众数、中位数 C.平均数、方差 D.众数、方差
8.等腰三角形三边长分别为,且是关于的一元二次方程的两根,则的值为( )
A.9 B.10 C.9或10 D.8或10
9.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )
A.(﹣2,1) B.(﹣8,4)
C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)
10.如图,立体图形的俯视图是
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.若,,则的值为 ________ .
12.一辆汽车在坡度为的斜坡上向上行驶130米,那么这辆汽车的高度上升了__________米.
13.含角30°的直角三角板与直线,的位置关系如图所示,已知,∠1=60°,以下三个结论中正确的是____(只填序号).
①AC=2BC ②△BCD为正三角形 ③AD=BD
14.如图所示,轮船在处观测灯塔位于北偏西方向上,轮船从处以每小时海里的速度沿南偏西方向匀速航行,小时后到达码头处,此时,观测灯塔位于北偏西方向上,则灯塔与码头的距离是______海里(结果精确到个位,参考数据:,,)
15.如图,若双曲线()与边长为3的等边△AOB(O为坐标原点)的边OA、AB分别交于C、D两点,且OC=2BD,则k的值为_____.
16.已知抛物线y=ax2+bx+c=0(a≠0) 与 轴交于 , 两点,若点 的坐标为 ,线段 的长为8,则抛物线的对称轴为直线 ________________.
17.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:
种子数量
100
200
500
1000
2000
A
出芽种子数
96
165
491
984
1965
发芽率
0.96
0.83
0.98
0.98
0.98
B
出芽种子数
96
192
486
977
1946
发芽率
0.96
0.96
0.97
0.98
0.97
下面有三个推断:
①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;
②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;
③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).
三、解答题(共7小题,满分69分)
18.(10分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD的长等于21米,在上点D的同侧取点A、B,使∠CAD=30,∠CBD=60.
(1)求AB的长(精确到0.1米,参考数据:);
(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.
19.(5分)如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.
(1)求证:△DOE≌△BOF;
(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.
20.(8分)如图1,点为正的边上一点(不与点重合),点分别在边上,且.
(1)求证:;
(2)设,的面积为,的面积为,求(用含的式子表示);
(3)如图2,若点为边的中点,求证: .
图1 图2
21.(10分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.求该抛物线的表达式;点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.
①当点P在直线BC的下方运动时,求△PBC的面积的最大值;
②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.
22.(10分)在矩形ABCD中,AB=6,AD=8,点E是边AD上一点,EM⊥EC交AB于点M,点N在射线MB上,且AE是AM和AN的比例中项.
如图1,求证:∠ANE=∠DCE;如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;连接AC,如果△AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长.
23.(12分)【发现证明】
如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,试判断BE,EF,FD之间的数量关系.
小聪把△ABE绕点A逆时针旋转90°至△ADG,通过证明△AEF≌△AGF;从而发现并证明了EF=BE+FD.
【类比引申】
(1)如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,∠EAF=45°,连接EF,请根据小聪的发现给你的启示写出EF、BE、DF之间的数量关系,并证明;
【联想拓展】
(2)如图3,如图,∠BAC=90°,AB=AC,点E、F在边BC上,且∠EAF=45°,若BE=3,EF=5,求CF的长.
24.(14分)某经销商从市场得知如下信息:
A品牌手表
B品牌手表
进价(元/块)
700
100
售价(元/块)
900
160
他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.试写出y与x之间的函数关系式;若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;选择哪种进货方案,该经销商可获利最大;最大利润是多少元.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
【分析】根据相似多边形性质:对应角相等.
【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫
故选C
【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.
2、D
【解析】
根据二次函数的图象与性质逐一判断即可求出答案.
【详解】
由图象可知:△>0,
∴b2﹣4ac>0,
∴b2>4ac,
故A正确;
∵抛物线开口向上,
∴a<0,
∵抛物线与y轴的负半轴,
∴c<0,
∵抛物线对称轴为x=<0,
∴b<0,
∴abc<0,
故B正确;
∵当x=1时,y=a+b+c>0,
∵4a<0,
∴a+b+c>4a,
∴b+c>3a,
故C正确;
∵当x=﹣1时,y=a﹣b+c>0,
∴a﹣b+c>c,
∴a﹣b>0,
∴a>b,
故D错误;
故选D.
考点:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程、不等式之间的转换,根的判别式的熟练运用.
3、A
【解析】
解:∵二次函数的图象开口向上,∴a>1.
∵对称轴在y轴的左边,∴<1.∴b>1.
∵图象与y轴的交点坐标是(1,﹣2),过(1,1)点,代入得:a+b﹣2=1.
∴a=2﹣b,b=2﹣a.∴y=ax2+(2﹣a)x﹣2.
把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣3,
∵b>1,∴b=2﹣a>1.∴a<2.
∵a>1,∴1<a<2.∴1<2a<3.∴﹣3<2a﹣3<1,即﹣3<P<1.
故选A.
【点睛】
本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键.
4、C
【解析】
利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.
解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…
∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,
∴D1E1=C1D1sin30°=,则B2C2===()1,
同理可得:B3C3==()2,
故正方形AnBnCnDn的边长是:()n﹣1.
则正方形A2017B2017C2017D2017的边长是:()2.
故选C.
“点睛”此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.
5、C
【解析】
试题分析:连结CD,可得CD为直径,在Rt△OCD中,CD=6,OC=2,根据勾股定理求得OD=4
所以tan∠CDO=,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故答案选C.
考点:圆周角定理;锐角三角函数的定义.
6、D
【解析】
先利用邻补角得到∠DCE=80°,然后根据平行线的性质求解.
【详解】
∵∠DCF=100°,
∴∠DCE=80°,
∵AB∥CD,
∴∠AEF=∠DCE=80°.
故选D.
【点睛】
本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
7、B
【解析】
由频数分布表可知后两组的频数和为4,即可得知频数之和,结合前两组的频数知第6、7个数据的平均数,可得答案.
【详解】
∵6吨和7吨的频数之和为4-x+x=4,
∴频数之和为1+2+5+4=12,
则这组数据的中位数为第6、7个数据的平均数,即=5,
∴对于不同的正整数x,中位数不会发生改变,
∵后两组频数和等于4,小于5,
∴对于不同的正整数x,众数不会发生改变,众数依然是5吨.
故选B.
【点睛】
本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数的定义和计算方法是解题的关键.
8、B
【解析】
由题意可知,等腰三角形有两种情况:当a,b为腰时,a=b,由一元二次方程根与系数的关系可得a+b=6,所以a=b=3,ab=9=n-1,解得n=1;当2为腰时,a=2(或b=2),此时2+b=6(或a+2=6),解得b=4(a=4),这时三边为2,2,4,不符合三角形三边关系:两边之和大于第三边,两边之差小于第三边,故不合题意.所以n只能为1.
故选B
9、D
【解析】
根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案.
【详解】
∵点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为,把△ABO缩小,
∴点A的对应点A′的坐标是:(-2,1)或(2,-1).
故选D.
【点睛】
此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.
10、C
【解析】
试题分析:立体图形的俯视图是C.故选C.
考点:简单组合体的三视图.
二、填空题(共7小题,每小题3分,满分21分)
11、-.
【解析】
分析:已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.
详解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.
故答案为.
点睛:本题考查了平方差公式,熟练掌握平方差公式是解答本题的关键.
12、50.
【解析】
根据坡度的定义可以求得AC、BC的比值,根据AC、BC的比值和AB的长度即可求得AC的值,即可解题.
【详解】
解:如图,米
,
设,则,
则,
解得,
故答案为:50.
【点睛】
本题考查了勾股定理在直角三角形中的运用,坡度的定义及直角三角形中三角函数值的计算,属于基础题.
13、②③
【解析】
根据平行线的性质以及等边三角形的性质即可求出答案.
【详解】
由题意可知:∠A=30°,∴AB=2BC,故①错误;
∵l1∥l2,∴∠CDB=∠1=60°.
∵∠CBD=60°,∴△BCD是等边三角形,故②正确;
∵△BCD是等边三角形,∴∠BCD=60°,∴∠ACD=∠A=30°,∴AD=CD=BD,故③正确.
故答案为②③.
【点睛】
本题考查了平行的性质以及等边三角形的性质,解题的关键是熟练运用平行线的性质,等边三角形的性质,含30度角的直角三角形的性质,本题属于中等题型.
14、1
【解析】
作BD⊥AC于点D,在直角△ABD中,利用三角函数求得BD的长,然后在直角△BCD中,利用三角函数即可求得BC的长.
【详解】
∠CBA=25°+50°=75°,
作BD⊥AC于点D,
则∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,
∠ABD=30°,
∴∠CBD=75°﹣30°=45°,
在直角△ABD中,BD=AB•sin∠CAB=20×sin60°=20×=10,
在直角△BCD中,∠CBD=45°,
则BC=BD=10×=10≈10×2.4=1(海里),
故答案是:1.
【点睛】
本题考查了解直角三角形的应用——方向角问题,正确求得∠CBD以及∠CAB的度数是解决本题的关键.
15、.
【解析】
过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,
设OC=2x,则BD=x,
在Rt△OCE中,∠COE=60°,则OE=x,CE=,
则点C坐标为(x,),
在Rt△BDF中,BD=x,∠DBF=60°,则BF=,DF=,
则点D的坐标为(,),
将点C的坐标代入反比例函数解析式可得:,
将点D的坐标代入反比例函数解析式可得:,
则,
解得:,(舍去),
故=.故答案为.
考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质.
16、或x=-1
【解析】
由点A的坐标及AB的长度可得出点B的坐标,由抛物线的对称性可求出抛物线的对称轴.
【详解】
∵点A的坐标为(-2,0),线段AB的长为8,
∴点B的坐标为(1,0)或(-10,0).
∵抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,
∴抛物线的对称轴为直线x==2或x==-1.
故答案为x=2或x=-1.
【点睛】
本题考查了抛物线与x轴的交点以及二次函数的性质,由抛物线与x轴的交点坐标找出抛物线的对称轴是解题的关键.
17、②③
【解析】分析:
根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.
详解:
(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;
(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;
(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.
故答案为:②③.
点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.
三、解答题(共7小题,满分69分)
18、(1)24.2米(2) 超速,理由见解析
【解析】
(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.
(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.
【详解】
解:(1)由題意得,
在Rt△ADC中,,
在Rt△BDC中,,
∴AB=AD-BD=(米).
(2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),
∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.
∵43.56千米/小时大于40千米/小时,
∴此校车在AB路段超速.
19、(2)证明见解析;(2)四边形EBFD是矩形.理由见解析.
【解析】
分析:(1)根据SAS即可证明;
(2)首先证明四边形EBFD是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵AE=CF,
∴OE=OF,
在△DEO和△BOF中,
,
∴△DOE≌△BOF.
(2)结论:四边形EBFD是矩形.
理由:∵OD=OB,OE=OF,
∴四边形EBFD是平行四边形,
∵BD=EF,
∴四边形EBFD是矩形.
点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
20、(1)详见解析;(1)详见解析;(3)详见解析.
【解析】
(1)根据两角对应相等的两个三角形相似即可判断;
(1)如图1中,分别过E,F作EG⊥BC于G,FH⊥BC于H,S1=•BD•EG=•BD•EG=•a•BE•sin60°=•a•BE,S1=•CD•FH=•b•CF,可得S1•S1=ab•BE•CF,由(1)得△BDE∽△CFD,,即BE•FC=BD•CD=ab,即可推出S1•S1=a1b1;
(3)想办法证明△DFE∽△CFD,推出,即DF1=EF•FC;
【详解】
(1)证明:如图1中,
在△BDE中,∠BDE+∠DEB+∠B=180°,又∠BDE+∠EDF+∠FDC=180°,
∴∠BDE+∠DEB+∠B=∠BDE+∠EDF+∠FDC,
∵∠EDF=∠B,
∴∠DEB=∠FDC,
又∠B=∠C,
∴△BDE∽△CFD.
(1)如图1中,分别过E,F作EG⊥BC于G,FH⊥BC于H,
S1=•BD•EG=•BD•EG=•a•BE•sin60°=•a•BE,S1=•CD•FH=•b•CF,
∴S1•S1=ab•BE•CF
由(1)得△BDE∽△CFD,
∴,即BE•FC=BD•CD=ab,
∴S1•S1=a1b1.
(3)由(1)得△BDE∽△CFD,
∴,
又BD=CD,
∴,
又∠EDF=∠C=60°,
∴△DFE∽△CFD,
∴,即DF1=EF•FC.
【点睛】
本题考查了相似形综合题、等边三角形的性质、相似三角形的判定和性质、三角形的面积等知识,解题的关键是正确寻找相似三角形的相似的条件.
21、 (1)y=x2+6x+5;(2)①S△PBC的最大值为;②存在,点P的坐标为P(﹣,﹣)或(0,5).
【解析】
(1)将点A、B坐标代入二次函数表达式,即可求出二次函数解析式;
(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大值即可;
②设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,求出 直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,、联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立⑤和y=x2+6x+5并解得:x=﹣,即可求出P点;当点P(P′)在直线BC上方时,根据∠PBC=∠BCD求出BP′∥CD,求出直线BP′的表达式为:y=2x+5,联立y=x2+6x+5和y=2x+5,求出x,即可求出P.
【详解】
解:(1)将点A、B坐标代入二次函数表达式得:,
解得:,
故抛物线的表达式为:y=x2+6x+5…①,
令y=0,则x=﹣1或﹣5,
即点C(﹣1,0);
(2)①如图1,过点P作y轴的平行线交BC于点G,
将点B、C的坐标代入一次函数表达式并解得:
直线BC的表达式为:y=x+1…②,
设点G(t,t+1),则点P(t,t2+6t+5),
S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,
∵-<0,
∴S△PBC有最大值,当t=﹣时,其最大值为;
②设直线BP与CD交于点H,
当点P在直线BC下方时,
∵∠PBC=∠BCD,
∴点H在BC的中垂线上,
线段BC的中点坐标为(﹣,﹣),
过该点与BC垂直的直线的k值为﹣1,
设BC中垂线的表达式为:y=﹣x+m,将点(﹣,﹣)代入上式并解得:
直线BC中垂线的表达式为:y=﹣x﹣4…③,
同理直线CD的表达式为:y=2x+2…④,
联立③④并解得:x=﹣2,即点H(﹣2,﹣2),
同理可得直线BH的表达式为:y=x﹣1…⑤,
联立①⑤并解得:x=﹣或﹣4(舍去﹣4),
故点P(﹣,﹣);
当点P(P′)在直线BC上方时,
∵∠PBC=∠BCD,∴BP′∥CD,
则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,
即直线BP′的表达式为:y=2x+5…⑥,
联立①⑥并解得:x=0或﹣4(舍去﹣4),
故点P(0,5);
故点P的坐标为P(﹣,﹣)或(0,5).
【点睛】
本题考查的是二次函数,熟练掌握抛物线的性质是解题的关键.
22、(1)见解析;(2);(1)DE的长分别为或1.
【解析】
(1)由比例中项知,据此可证△AME∽△AEN得∠AEM=∠ANE,再证∠AEM=∠DCE可得答案;
(2)先证∠ANE=∠EAC,结合∠ANE=∠DCE得∠DCE=∠EAC,从而知,据此求得AE=8﹣=,由(1)得∠AEM=∠DCE,据此知,求得AM=,由求得MN=;
(1)分∠ENM=∠EAC和∠ENM=∠ECA两种情况分别求解可得.
【详解】
解:(1)∵AE是AM和AN的比例中项
∴,
∵∠A=∠A,
∴△AME∽△AEN,
∴∠AEM=∠ANE,
∵∠D=90°,
∴∠DCE+∠DEC=90°,
∵EM⊥BC,
∴∠AEM+∠DEC=90°,
∴∠AEM=∠DCE,
∴∠ANE=∠DCE;
(2)∵AC与NE互相垂直,
∴∠EAC+∠AEN=90°,
∵∠BAC=90°,
∴∠ANE+∠AEN=90°,
∴∠ANE=∠EAC,
由(1)得∠ANE=∠DCE,
∴∠DCE=∠EAC,
∴tan∠DCE=tan∠DAC,
∴,
∵DC=AB=6,AD=8,
∴DE=,
∴AE=8﹣=,
由(1)得∠AEM=∠DCE,
∴tan∠AEM=tan∠DCE,
∴,
∴AM=,
∵,
∴AN=,
∴MN=;
(1)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,
又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,
∴∠AEC=∠NME,
当△AEC与以点E、M、N为顶点所组成的三角形相似时
①∠ENM=∠EAC,如图2,
∴∠ANE=∠EAC,
由(2)得:DE=;
②∠ENM=∠ECA,
如图1,
过点E作EH⊥AC,垂足为点H,
由(1)得∠ANE=∠DCE,
∴∠ECA=∠DCE,
∴HE=DE,
又tan∠HAE=,
设DE=1x,则HE=1x,AH=4x,AE=5x,
又AE+DE=AD,
∴5x+1x=8,
解得x=1,
∴DE=1x=1,
综上所述,DE的长分别为或1.
【点睛】
本题是相似三角形的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用等知识点.
23、(1)DF=EF+BE.理由见解析;(2)CF=1.
【解析】(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,证出△AEF≌△AFG,根据全等三角形的性质得出EF=FG,即可得出答案;
(2)根据旋转的性质的AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,根据勾股定理有FG2=FC2+CG2=BE2+FC2;关键全等三角形的性质得到FG=EF,利用勾股定理可得CF.
解:(1)DF=EF+BE.理由:如图1所示,
∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,
∵∠ADC=∠ABE=90°,∴点C、D、G在一条直线上,∴EB=DG,AE=AG,∠EAB=∠GAD,
∵∠BAG+∠GAD=90°,∴∠EAG=∠BAD=90°,
∵∠EAF=15°,∴∠FAG=∠EAG﹣∠EAF=90°﹣15°=15°,∴∠EAF=∠GAF,
在△EAF和△GAF中,,∴△EAF≌△GAF,∴EF=FG,∵FD=FG+DG,∴DF=EF+BE;
(2)∵∠BAC=90°,AB=AC,∴将△ABE绕点A顺时针旋转90°得△ACG,连接FG,如图2,
∴AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,
∴∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,∴FG2=FC2+CG2=BE2+FC2;
又∵∠EAF=15°,而∠EAG=90°,∴∠GAF=90°﹣15°,
在△AGF与△AEF中,,∴△AEF≌△AGF,∴EF=FG,
∴CF2=EF2﹣BE2=52﹣32=16,∴CF=1.
“点睛”本题考查了全等三角形的性质和判定,勾股定理,正方形的性质的应用,正确的作出辅助线构造全等三角形是解题的关键,此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫.
24、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.
【解析】
(1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;
(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;
(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.
【详解】
解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.
由700x+100(100﹣x)≤40000得x≤50.
∴y与x之间的函数关系式为y=140x+6000(x≤50)
(2)令y≥12600,即140x+6000≥12600,
解得x≥47.1.
又∵x≤50,∴经销商有以下三种进货方案:
方案
A品牌(块)
B品牌(块)
①
48
52
②
49
51
③
50
50
(3)∵140>0,∴y随x的增大而增大.
∴x=50时y取得最大值.
又∵140×50+6000=13000,
∴选择方案③进货时,经销商可获利最大,最大利润是13000元.
【点睛】
本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.
2022年江苏省南京溧水区中考数学模试卷含解析: 这是一份2022年江苏省南京溧水区中考数学模试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,计算,下列计算正确的是等内容,欢迎下载使用。
2022年江苏省南京溧水区四校联考毕业升学考试模拟卷数学卷含解析: 这是一份2022年江苏省南京溧水区四校联考毕业升学考试模拟卷数学卷含解析,共21页。
2022年江苏省南京市南京民办育英第二外国语校中考数学仿真试卷含解析: 这是一份2022年江苏省南京市南京民办育英第二外国语校中考数学仿真试卷含解析,共20页。试卷主要包含了﹣18的倒数是等内容,欢迎下载使用。