江苏省江阴市夏港中学2022年中考二模数学试题含解析
展开
这是一份江苏省江阴市夏港中学2022年中考二模数学试题含解析,共19页。试卷主要包含了在实数,有理数有,计算3÷2的结果是, “a是实数,”这一事件是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是( )
A. B. C. D.
2.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为( )
A. B. C. D.
3.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为( )
A.﹣1 B.0 C.1 D.3
4.在实数,有理数有( )
A.1个 B.2个 C.3个 D.4个
5.第四届济南国际旅游节期间,全市共接待游客686000人次.将686000用科学记数法表示为( )
A.686×104 B.68.6×105 C.6.86×106 D.6.86×105
6.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,下列说法错误的是( )
A.甲的速度是70米/分 B.乙的速度是60米/分
C.甲距离景点2100米 D.乙距离景点420米
7.计算(-ab2)3÷(-ab)2的结果是( )
A.ab4 B.-ab4 C.ab3 D.-ab3
8. “a是实数,”这一事件是( )
A.不可能事件 B.不确定事件 C.随机事件 D.必然事件
9.在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A、B、C上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是△ABC的( )
A.三条高的交点 B.重心 C.内心 D.外心
10.已知一个多边形的内角和是外角和的2倍,则此多边形的边数为 ( )
A.6 B.7 C.8 D.9
11.若关于x的一元二次方程x(x+2)=m总有两个不相等的实数根,则( )
A.m<﹣1 B.m>1 C.m>﹣1 D.m<1
12.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是( )
A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在两个同心圆中,三条直径把大、小圆都分成相等的六个部分,若随意向圆中投球,球落在黑色区域的概率是______.
14.如果点P1(2,y1)、P2(3,y2) 在抛物线上,那么 y1 ______ y2.(填“>”,“0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆0,即得m的取值范围.
【详解】
因为方程是关于x的一元二次方程方程,所以可得,Δ=4+4m > 0,解得m>﹣1,故选D.
【点睛】
本题熟练掌握一元二次方程的基本概念是本题的解题关键.
12、C
【解析】
根据旋转的性质得,∠ABD=∠CBE=60°, ∠E=∠C,
则△ABD为等边三角形,即 AD=AB=BD,得∠ADB=60°因为∠ABD=∠CBE=60°,则∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故选C.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
根据几何概率的求法:球落在黑色区域的概率就是黑色区域的面积与总面积的比值.
【详解】
解:由图可知黑色区域与白色区域的面积相等,故球落在黑色区域的概率是=.
【点睛】
本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.
14、>
【解析】
分析:首先求得抛物线y=﹣x2+2x的对称轴是x=1,利用二次函数的性质,点M、N在对称轴的右侧,y随着x的增大而减小,得出答案即可.
详解:抛物线y=﹣x2+2x的对称轴是x=﹣=1.∵a=﹣1<0,抛物线开口向下,1<2<3,∴y1>y2.
故答案为>.
点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题.
15、60°
【解析】
先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D的度数.
【详解】
∵DA⊥CE,
∴∠DAE=90°,
∵∠1=30°,
∴∠BAD=60°,
又∵AB∥CD,
∴∠D=∠BAD=60°,
故答案为60°.
【点睛】
本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.
16、11.
【解析】
试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,
∴这7天中最大的日温差是11℃.
考点:1.有理数大小比较;2.有理数的减法.
17、80°
【解析】
根据平行线的性质求出∠4,根据三角形内角和定理计算即可.
【详解】
解:
∵a∥b,
∴∠4=∠l=60°,
∴∠3=180°-∠4-∠2=80°,
故答案为:80°.
【点睛】
本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.
18、-
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
原式=2.
故答案为-.
【点睛】
本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、见解析
【解析】
根据题意:一边为x米,面积为4,则另一边为米,篱笆长为y=2(x)=2x,由x═()2+4可得当x=2,y有最小值,则可求篱笆长.
【详解】
根据题意:一边为x米,面积为4,则另一边为米,篱笆长为y=2(x)=2x
∵x()2+()2=()2+4,∴x4,∴2x1,∴当x=2时,y有最小值为1,由此小强确定篱笆长至少为1米.
故答案为:y=2x,2,1.
【点睛】
本题考查了反比例函数的应用,完全平方公式的运用,关键是熟练运用完全平方公式.
20、(1);(2);(3)x=1.
【解析】
(1)用不合格品的数量除以总量即可求得抽到不合格品的概率;
(2)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算;
(3)根据频率估计出概率,利用概率公式列式计算即可求得x的值.
【详解】
解:(1)∵4件同型号的产品中,有1件不合格品,
∴P(不合格品)=;
(2)
共有12种情况,抽到的都是合格品的情况有6种,
P(抽到的都是合格品)==;
(3)∵大量重复试验后发现,抽到合格品的频率稳定在0.95,
∴抽到合格品的概率等于0.95,
∴ =0.95,
解得:x=1.
【点睛】
本题考查利用频率估计概率;概率公式;列表法与树状图法.
21、(1)①150;②作图见解析;③13.3%;(2).
【解析】
(1)①用“中评”、“差评”的人数除以二者的百分比之和即可得总人数;②用总人数减去“中评”、“差评”的人数可得“好评”的人数,补全条形图即可;③根据“差评”的人数÷总人数×100%即可得“差评”所占的百分比;
(2)可通过列表表示出甲、乙对商品评价的所有可能结果数,根据概率公式即可计算出两人中至少有一个给“好评”的概率.
【详解】
①小明统计的评价一共有:(40+20)÷(1-60%=150(个);
②“好评”一共有150×60%=90(个),补全条形图如图1:
③图2中“差评”所占的百分比是:×100%=13.3%;
(2)列表如下:
好
中
差
好
好,好
好,中
好,差
中
中,好
中,中
中,差
差
差,好
差,中
差,差
由表可知,一共有9种等可能结果,其中至少有一个给“好评”的有5种,
∴两人中至少有一个给“好评”的概率是.
考点:扇形统计图;条形统计图;列表法与树状图法.
22、BD=2.
【解析】
作DM⊥BC,交BC延长线于M,连接AC,由勾股定理得出AC2=AB2+BC2=25,求出AC2+CD2=AD2,由勾股定理的逆定理得出△ACD是直角三角形,∠ACD=90°,证出∠ACB=∠CDM,得出△ABC∽△CMD,由相似三角形的对应边成比例求出CM=2AB=6,DM=2BC=8,得出BM=BC+CM=10,再由勾股定理求出BD即可.
【详解】
作DM⊥BC,交BC延长线于M,连接AC,如图所示:
则∠M=90°,
∴∠DCM+∠CDM=90°,
∵∠ABC=90°,AB=3,BC=4,
∴AC2=AB2+BC2=25,
∵CD=10,AD= ,
∴AC2+CD2=AD2,
∴△ACD是直角三角形,∠ACD=90°,
∴∠ACB+∠DCM=90°,
∴∠ACB=∠CDM,
∵∠ABC=∠M=90°,
∴△ABC∽△CMD,
∴,
∴CM=2AB=6,DM=2BC=8,
∴BM=BC+CM=10,
∴BD===,
【点睛】
本题考查了相似三角形的判定与性质、勾股定理、勾股定理的逆定理;熟练掌握相似三角形的判定与性质,证明由勾股定理的逆定理证出△ACD是直角三角形是解决问题的关键.
23、-1
【解析】
原式第二项利用除法法则变形,约分后通分,并利用同分母分式的减法法则计算,约分得到最简结果,把a的值代入计算即可求出值.
【详解】
解:原式=﹣•2(a﹣3)
=﹣==,
当a=1时,原式==﹣1.
【点睛】
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
24、证明见解析.
【解析】
根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.
【详解】
∵AD∥BE,∴∠A=∠B.
在△ACD和△BEC中
∵,∴△ACD≌△BEC(SAS),∴DC=CE.
∵CF平分∠DCE,∴CF⊥DE(三线合一).
【点睛】
本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.
25、(1)10750;(2);(3)最大利润为10750元.
【解析】
(1)根据“利润=销售总额-总成本”结合两种T恤的销售数量代入相关代数式进行求解即可;
(2)根据题意,分两种情况进行讨论:①0
相关试卷
这是一份2023-2024学年江苏省江阴市夏港中学数学九上期末学业质量监测模拟试题含答案,共7页。试卷主要包含了抛物线y=﹣2,在中,,则的正切值为,若,则下列等式一定成立的是等内容,欢迎下载使用。
这是一份2023-2024学年江苏省江阴市夏港中学八上数学期末质量跟踪监视模拟试题含答案,共6页。试卷主要包含了考生要认真填写考场号和座位序号,用科学记数法表示,在中,的外角等于,的度数是等内容,欢迎下载使用。
这是一份江苏省江阴市夏港中学2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共25页。试卷主要包含了的倒数是等内容,欢迎下载使用。