![2023版步步高物理一轮复习讲义第五章 专题强化八 卫星变轨问题 双星模型01](http://www.enxinlong.com/img-preview/3/6/13129696/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023版步步高物理一轮复习讲义第五章 专题强化八 卫星变轨问题 双星模型02](http://www.enxinlong.com/img-preview/3/6/13129696/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023版步步高物理一轮复习讲义第五章 专题强化八 卫星变轨问题 双星模型03](http://www.enxinlong.com/img-preview/3/6/13129696/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
还剩11页未读,
继续阅读
所属成套资源:2023版物理高考人教版一轮复习讲义【解析版】
成套系列资料,整套一键下载
2023版步步高物理一轮复习讲义第五章 专题强化八 卫星变轨问题 双星模型
展开
专题强化八 卫星变轨问题 双星模型目标要求 1.会处理人造卫星的变轨和对接问题.2.掌握双星、多星系统,会解决相关问题.题型一 卫星的变轨和对接问题1.变轨原理(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上,如图所示.(2)在A点(近地点)点火加速,由于速度变大,万有引力不足以提供卫星在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ.(3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ.2.变轨过程分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B点时速率分别为vA、vB.在A点加速,则vA>v1,在B点加速,则v3>vB,又因v1>v3,故有vA>v1>v3>vB.(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,卫星在轨道Ⅱ或轨道Ⅲ上经过B点的加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律eq \f(r3,T2)=k可知T1vc=ve,C正确,D错误.9.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周期为( )A.eq \r(\f(n3,k2))T B.eq \r(\f(n3,k))T C.eq \r(\f(n2,k))T D.eq \r(\f(n,k))T答案 B解析 设原来双星间的距离为L,质量分别为M、m,圆周运动的圆心距质量为m的恒星距离为r,双星间的万有引力提供向心力,对质量为m的恒星:Geq \f(Mm,L2)=m(eq \f(2π,T))2·r,对质量为M的恒星:Geq \f(Mm,L2)=M(eq \f(2π,T))2(L-r),得Geq \f(M+m,L2)=eq \f(4π2,T2)·L,即T2=eq \f(4π2L3,GM+m);则当总质量为k(M+m),间距为L′=nL时,T′=eq \r(\f(n3,k))T,选项B正确.10.宇宙空间有一种由三颗星A、B、C组成的三星体系,它们分别位于等边三角形ABC的三个顶点上,绕一个固定且共同的圆心O做匀速圆周运动,轨道如图中实线所示,其轨道半径rAvB>vCB.加速度大小关系是aA>aB>aCC.质量大小关系是mA>mB>mCD.所受万有引力合力的大小关系是FA=FB=FC答案 C解析 三星体系中三颗星的角速度ω相同,轨道半径rAeq \f(GmBmC,L2),得mA>mB,同理可知mB>mC,所以mA>mB>mC,故C正确;由于mA>mB>mC,结合万有引力定律,可知A与B之间的引力大于A与C之间的引力,又大于B与C之间的引力,又知A、B、C受到的两个万有引力之间的夹角都是相等的,根据两个分力的角度一定时,两个力越大,合力越大,可知FA>FB>FC,故D错误.11.(多选)如图所示,月球探测器在一个环绕月球的椭圆轨道上运行,周期为T1,飞行一段时间后实施近月制动,进入距月球表面高度为h的环月圆轨道,运行周期为T2,月球的半径为R.下列说法正确的是( )A.根据题中数据,无法求出月球探测器的质量B.探测器在椭圆轨道远月点的速度大于近月点的速度C.椭圆轨道的半长轴为(R+h)eq \r(3,\f(T12,T22))D.探测器在椭圆轨道上运行的最大速度为eq \f(2πR+h,T2)答案 AC解析 利用万有引力定律对探测器研究时,探测器的质量会被消去,无法求出探测器的质量,故A正确;由开普勒第二定律可知,探测器在椭圆轨道远月点的速度小于近月点的速度,故B错误;设椭圆轨道的半长轴为a,根据开普勒第三定律有eq \f(a3,T12)=eq \f(R+h3,T22),解得a=(R+h)eq \r(3,\f(T12,T22)),故C正确;探测器在圆轨道上运行的速度大小v=eq \f(2πR+h,T2),探测器在椭圆轨道上运行时,在近月点的速度最大,由于探测器在近月点制动后进入圆轨道,探测器在椭圆轨道的近月点的速度大于在圆轨道上运行的速度,故D错误.12.(多选)太空中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对它们的引力作用.已观测到稳定的三星系统存在两种基本的构成形式(如图):一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行.设这三颗星的质量均为M,并且两种系统的运动周期相同,则( )A.直线三星系统中甲星和丙星的线速度相同B.直线三星系统的运动周期T=4πReq \r(\f(R,5GM))C.三角形三星系统中星体间的距离L=eq \r(3,\f(12,5))RD.三角形三星系统的线速度大小为eq \f(1,2)eq \r(\f(5GM,R))答案 BC解析 直线三星系统中甲星和丙星的线速度大小相等,方向相反,选项A错误;直线三星系统中,对甲星有Geq \f(M2,R2)+Geq \f(M2,2R2)=Meq \f(4π2,T2)R,解得T=4πReq \r(\f(R,5GM)),选项B正确;对三角形三星系统中任一颗星,根据万有引力定律和牛顿第二定律得2Geq \f(M2,L2)cos 30°=Meq \f(4π2,T2)·eq \f(L,2cos 30°),又由题知两种系统的运动周期相同,即T=4πReq \r(\f(R,5GM)),联立解得L=eq \r(3,\f(12,5))R,选项C正确;三角形三星系统的线速度大小为v=eq \f(2πR,T)=eq \f(2π\b\lc\(\rc\)(\a\vs4\al\co1(\f(L,2cos 30°))),T)=eq \f(\r(3),6)·eq \r(3,\f(12,5))·eq \r(\f(5GM,R)),选项D错误.
相关资料
更多