2022年中考数学考前30天迅速提分专题09 统计与概率(含答案)
展开2022年中考数学考前30天迅速提分复习方案(全国通用)
专题1.9统计与概率(全国中考34个考点真题训练)
1.调查收集数据的过程与方法
(1)在统计调查中,我们利用调查问卷收集数据,利用表格整理数据,利用统计图描述数据,通过分析表和图来了解情况.
(2)统计图通常有条形统计图,扇形统计图,折线统计图.
(3)设计调查问卷分以下三步:①确定调查目的;②选择调查对象;③设计调查问题.
(4)统计调查的一般过程:
①问卷调查法﹣﹣﹣﹣﹣收集数据;
②列统计表﹣﹣﹣﹣﹣整理数据;
③画统计图﹣﹣﹣﹣﹣描述数据.
2.全面调查与抽样调查
1、统计调查的方法有全面调查(即普查)和抽样调查.
2、全面调查与抽样调查的优缺点:①全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.②抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.
3、如何选择调查方法要根据具体情况而定.一般来讲:通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.其一,调查者能力有限,不能进行普查.如:个体调查者无法对全国中小学生身高情况进行普查.其二,调查过程带有破坏性.如:调查一批灯泡的使用寿命就只能采取抽样调查,而不能将整批灯泡全部用于实验.其三,有些被调查的对象无法进行普查.如:某一天,全国人均讲话的次数,便无法进行普查.
3.总体、个体、样本、样本容量
(1)定义
①总体:我们把所要考察的对象的全体叫做总体;
②个体:把组成总体的每一个考察对象叫做个体;
③样本:从总体中取出的一部分个体叫做这个总体的一个样本;
④样本容量:一个样本包括的个体数量叫做样本容量.
(2)关于样本容量
样本容量只是个数字,没有单位.
4.抽样调查的可靠性
(1)抽样调查是实际中经常采用的调查方式.
(2)如果抽取的样本得当,就能很好地反映总体的情况,否则抽样调查的结果会偏离总体情况.
(3)抽样调查除了具有花费少,省时的特点外,还适用一些不宜使用全面调查的情况(如具有破坏性的调查).
(4)分层抽样获取的样本与直接进行简单的随机抽样相比一般能更好地反映总体.其特点是:通过划类分层,增大了各类型中单位间的共同性,容易抽出具有代表性的调查样本,该方法适用于总体情况复杂,各单位之间差异较大,单位较多的情况.
5.用样本估计总体
用样本估计总体是统计的基本思想.
1、用样本的频率分布估计总体分布:
从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.
2、用样本的数字特征估计总体的数字特征(主要数据有众数、中位数、平均数、标准差与方差 ).
一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
6.频数与频率
(1)频数是指每个对象出现的次数.
(2)频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数
一般称落在不同小组中的数据个数为该组的频数,频数与数据总数的比值为频率.频率反映了各组频数的大小在总数中所占的分量.
7.频数(率)分布表
1、在统计数据时,经常把数据按照不同的范围分成几个组,分成的组的个数称为组数,每一组两个端点的差称为组距,称这样画出的统计图表为频数分布表.
2、列频率分布表的步骤:
(1)计算极差,即计算最大值与最小值的差.
(2)决定组距与组数(组数与样本容量有关,一般来说样本容量越大,分组就越多,样本容量不超过100时,按数据的多少,常分成5~12组).
(3)将数据分组.
(4)列频率分布表.
8.频数(率)分布直方图
画频率分布直方图的步骤:
(1)计算极差,即计算最大值与最小值的差.(2)决定组距与组数(组数与样本容量有关,一般来说样本容量越大,分组就越多,样本容量不超过100时,按数据的多少,常分成5~12组).(3)确定分点,将数据分组.(4)列频率分布表.(5)绘制频率分布直方图.
注:①频率分布表列出的是在各个不同区间内取值的频率,频率分布直方图是用小长方形面积的大小来表示在各个区间内取值的频率.直角坐标系中的纵轴表示频率与组距的比值,即小长方形面积=组距×=频率.②各组频率的和等于1,即所有长方形面积的和等于1.③频率分布表在数量表示上比较确切,但不够直观、形象,不利于分析数据分布的总体态势.④从频率分布直方图可以清楚地看出数据分布的总体态势,但是从直方图本身得不出原始的数据内容.
9.频数(率)分布折线图
一般利用直方图画频数分布折线图,在频数分布直方图中,把每个小长方形上面的一条边的中点顺次连接起来,得到频数折线图.
注意:折线图要与横轴相交,方法是在直方图的左右两边各延伸一个假想组,并将频数折线两端连接到假想组中点,它主要显示数据的变化趋势.
10.统计表
统计表可以将大量数据的分类结果清晰,一目了然地表达出来.
统计调查所得的原始资料,经过整理,得到说明社会现象及其发展过程的数据,把这些数据按一定的顺序排列在表格中,就形成“统计表”.统计表是表现数字资料整理结果的最常用的一种表格. 统计表是由纵横交叉线条所绘制的表格来表现统计资料的一种形式.
11.扇形统计图
(1)扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
(2)扇形图的特点:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.
(3)制作扇形图的步骤
①根据有关数据先算出各部分在总体中所占的百分数,再算出各部分圆心角的度数,公式是各部分扇形圆心角的度数=部分占总体的百分比×360°. ②按比例取适当半径画一个圆;按扇形圆心角的度数用量角器在圆内量出各个扇形的圆心角的度数;
④在各扇形内写上相应的名称及百分数,并用不同的标记把各扇形区分开来.
12.条形统计图
(1)定义:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.
(2)特点:从条形图可以很容易看出数据的大小,便于比较.
(3)制作条形图的一般步骤:
①根据图纸的大小,画出两条互相垂直的射线.
②在水平射线上,适当分配条形的位置,确定直条的宽度和间隔.
③在与水平射线垂直的射线上,根据数据大小的具体情况,确定单位长度表示多少.
④按照数据大小,画出长短不同的直条,并注明数量.
13.折线统计图
(1)定义:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.
(2)特点:折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.
(3)绘制折线图的步骤
①根据统计资料整理数据.
②先画纵轴,后画横轴,纵、横都要有单位,按纸面的大小来确定用一定单位表示一定的数量. ③根据数量的多少,在纵、横轴的恰当位置描出各点,然后把各点用线段顺序连接起来.
14.统计图的选择
统计图的选择:即根据常用的几种统计图反映数据的不同特征结合实际来选择.
(1)扇形统计图的特点:
①用扇形的面积表示部分在总体中所占的百分比.②易于显示每组数据相对于总数的大小.
(2)条形统计图的特点:
①条形统计图能清楚地表示出每个项目中的具体数目.②易于比较数据之间的差别.
(3)折线统计图的特点:
①能清楚地反映事物的变化情况.②显示数据变化趋势.
根据具体问题选择合适的统计图,可以使数据变得清晰直观.不恰当的图不仅难以达到期望的效果,有时还会给人们以误导.因此要想准确地反映数据的不同特征,就要选择合适的统计图.
15.其他统计图
(1)根据调查项目和调查目的,设计出用于记录数据的统计表格或对统计表格中缺少的数据进行完善.表格要求简明,覆盖所有调查数据.
(2)象形统计图是表现统计数字大小和变动的各种图形总称.其中有条形统计图、扇形统计图、折线统计图、象形图等.在统计学中把利用统计图形表现统计资料的方法叫做统计图示法.其特点是:形象具体、简明生动、通俗易懂、一目了然.其主要用途有:表示现象间的对比关系;揭露总体结构;检查计划的执行情况;揭示现象间的依存关系,反映总体单位的分配情况;说明现象在空间上的分布情况.一般采用直角坐标系.横坐标用来表示事物的组别或自变量x,纵坐标常用来表示事物出现的次数或因变量y;或采用角度坐标(如圆形图)、地理坐标(如地形图)等.按图尺的数字性质分类,有实数图、累积数图、百分数图、对数图、坐标图、指数图等;其结构包括图名、图目(图中的标题)、图尺(坐标单位)、各种图线(基线、轮廓线、指导线等)、图注(图例说明、资料来源等)等.
16.算术平均数
(1)平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.
(2)算术平均数:对于n个数x1,x2,…,xn,则=(x1+x2+…+xn)就叫做这n个数的算术平均数.
(3)算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数.
17.加权平均数
(1)加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则x1w1+x2w2+…+xnwnw1+w2+…+wn叫做这n个数的加权平均数.
(2)权的表现形式,一种是比的形式,如4:3:2,另一种是百分比的形式,如创新占50%,综合知识占30%,语言占20%,权的大小直接影响结果.
(3)数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.
(4)对于一组不同权重的数据,加权平均数更能反映数据的真实信息.
18.计算器-平均数
(1)如果是普通计算器,那么只能把所有的数字相加,然后除以数字的个数.
(2)如果是科学记算器,那么可以用如下方法:
①调整计算器的模式为STAT模式.
②依次输入数据,每次输入数据后按DATA键确认数据的输入.
③输入完毕后,按x¯键,即可获得平均数了.
(3)由于计算器的型号不同,可以按照说明书中的方法进行操作.
19.中位数
(1)中位数:
将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.
如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
(2)中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息.
(3)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中出现,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.
20.众数
(1)一组数据中出现次数最多的数据叫做众数.
(2)求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.
(3)众数不易受数据中极端值的影响.众数也是数据的一种代表数,反映了一组数据的集中程度,众数可作为描述一组数据集中趋势的量..
21.极差
(1)极差是指一组数据中最大数据与最小数据的差.
极差=最大值﹣最小值.
(2)极差是刻画数据离散程度的一个统计量.它只能反映数据的波动范围,不能衡量每个数据的变化情况.
(3)极差的优势在于计算简单,但它受极端值的影响较大.
22.方差
(1)方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.
(2)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s2来表示,计算公式是:
s2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2](可简单记忆为“方差等于差方的平均数”)
(3)方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
23.标准差
(1)标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.
公式:s=s2=1n[(x1﹣x¯)2+(x2﹣x¯)2+…+(xn﹣x¯)2]
(2)标准差是反应一组数据离散程度最常用的一种量化形式,是表示精密确的最要指标.标准差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
24.计算器-标准差与方差
由于不同的计算器,其操作不完全相同,可以根据计算器的说明书进行操作.
以如图的计算器为例说明:
首先,按2ndf键,再按on/c(清零)键,即进入统计状态,右上角有stat显示.
接着,进入数据输入存
储状态,输入一个数据后按M+键,即对数据进行储存,可显示1,表示输入了第一个数据,依次再输入,
显示2,为第二个数据.数据输入完成后,就可进行计算,按2ndf,再按RM,即显示为平均值,其他同此.
先按2ndf键再按其他键,表示选择的是该键上方的功能.
25.统计量的选择
(1)一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定.但这并不是绝对的,有时多数数据相对集中,整体波动水平较小,但个别数据的偏离仍可能极大地影响极差、方差或标准差的值.从而导致这些量度数值较大,因此在实际应用中应根据具体问题情景进行具体分析,选用适当的量度刻画数据的波动情况,一般来说,只有在两组数据的平均数相等或比较接近时,才用极差、方差或标准差来比较两组数据的波动大小.
(2)平均数、众数、中位数和极差、方差在描述数据时的区别:①数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,极差、方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数,描述了数据的离散程度.②极差和方差的不同点:极差表示一组数据波动范围的大小,一组数据极差越大,则它的波动范围越大;方差和标准差反映了一组数据与其平均值的离散程度的大小.方差(或标准差)越大,数据的历算程度越大,稳定性越小;反之,则离散程度越小,稳定性越好.
26.随机事件
(1)确定事件
事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.
(2)随机事件
在一定条件下,可能发生也可能不发生的事件,称为随机事件.
(3)事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,
①必然事件发生的概率为1,即P(必然事件)=1;
②不可能事件发生的概率为0,即P(不可能事件)=0;
③如果A为不确定事件(随机事件),那么0<P(A)<1.
27.可能性的大小
随机事件发生的可能性(概率)的计算方法:
(1)理论计算又分为如下两种情况:
第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算.
(2)实验估算又分为如下两种情况:
第一种:利用实验的方法进行概率估算.要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率.
第二种:利用模拟实验的方法进行概率估算.如,利用计算器产生随机数来模拟实验.
28.概率的意义
(1)一般地,在大量重复实验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p.
(2)概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.
(3)概率取值范围:0≤p≤1.
(4)必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.
(4)事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.
(5)通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题.
29.概率公式
(1)随机事件A的概率P(A)=.
(2)P(必然事件)=1.
(3)P(不可能事件)=0.
30.几何概率
所谓几何概型的概率问题,是指具有下列特征的一些随机现象的概率问题:设在空间上有一区域G,又区域g包含在区域G内(如图),而区域G与g都是可以度量的(可求面积),现随机地向G内投掷一点M,假设点M必落在G中,且点M落在区域G的任何部分区域g内的概率只与g的度量(长度、面积、体积等)成正比,而与g的位置和形状无关.具有这种性质的随机试验(掷点),称为几何概型.关于几何概型的随机事件“向区域G中任意投掷一个点M,点M落在G内的部分区域g”的概率P定义为:g的度量与G的度量之比,即 P=g的测度G的测度
简单来说:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.
31.列表法与树状图法
(1)当试验中存在两个元素且出现的所有可能的结果较多时,我们常用列表的方式,列出所有可能的结果,再求出概率.
(2)列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
(3)列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.
(4)树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的枝丫形式,最末端的枝丫个数就是总的可能的结果n.
(5)当有两个元素时,可用树形图列举,也可以列表列举.
32.游戏公平性
(1)判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.
(2)概率=.
33.利用频率估计概率
(1)大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
(2)用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.
(3)当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.
34.模拟实验
(1)在一些有关抽取实物实验中通常用摸取卡片代替了实际的物品或人抽取,这样的实验称为模拟实验.
(2)模拟实验是用卡片、小球编号等形式代替实物进行实验,或用计算机编号等进行实验,目的在于省时、省力,但能达到同样的效果.
(3)模拟实验只能用更简便方法完成,验证实验目的,但不能改变实验目的,这部分内容根据《新课标》要求,只要设计出一个模拟实验即可.
【真题训练】
一.调查收集数据的过程与方法(共1小题)
1.(2020•安顺)2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是( )
A.直接观察 B.实验 C.调查 D.测量
二.全面调查与抽样调查(共1小题)
2.(2021•盘锦)下列调查中,适宜采用抽样调查的是( )
A.调查某班学生的身高情况
B.调查亚运会100m游泳决赛运动员兴奋剂的使用情况
C.调查某批汽车的抗撞击能力
D.调查一架“歼20”隐形战斗机各零部件的质量
三.总体、个体、样本、样本容量(共1小题)
3.(2021•张家界)某校有4000名学生,随机抽取了400名学生进行体重调查,下列说法错误的是( )
A.总体是该校4000名学生的体重
B.个体是每一个学生
C.样本是抽取的400名学生的体重
D.样本容量是400
四.抽样调查的可靠性(共1小题)
4.(2018•重庆)为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是( )
A.企业男员工
B.企业年满50岁及以上的员工
C.用企业人员名册,随机抽取三分之一的员工
D.企业新进员工
五.用样本估计总体(共2小题)
5.(2021•青岛)在一个不透明的袋中装有若干个红球和4个黑球,每个球除颜色外完全相同,摇匀后从中摸出一个球,记下颜色后再放回袋中,不断重复这一过程,共摸球100次,其中有40次摸到黑球,估计袋中红球的个数是 .
6.(2020•黔南州)勤劳是中华民族的传统美德,学校要求学生在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了七年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果绘制了如图两幅不完整的统计图:
根据统计图提供的信息,解答下列问题:
(1)本次共调查了 名学生;
(2)根据以上信息直接在答题卡上补全条形统计图;
(3)扇形统计图中m= ,类别D所对应的扇形圆心角α的度数是 度;
(4)若该校七年级共有400名学生,根据抽样调查的结果,估计该校七年级有多少名学生寒假在家做家务的总时间不低于20小时?
六.频数与频率(共1小题)
7.(2021•乐山)在一次心理健康教育活动中,张老师随机抽取了40名学生进行了心理健康测试,并将测试结果按“健康、亚健康、不健康”绘制成下列表格,其中测试结果为“健康”的频率是( )
类型
健康
亚健康
不健康
数据(人)
32
7
1
A.32 B.7 C. D.
七.频数(率)分布表(共2小题)
8.(2020•赤峰)某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数量相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:
某校60名学生体育测试成绩频数分布表
成绩
划记
频数
百分比
优秀
a
30%
良好
30
b
合格
9
15%
不合格
3
5%
合计
60
60
100%
如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为 人.
9.(2020•大连)某校根据《教育部基础教育课程教材发展中心中小学生阅读指导目录(2020版)》公布的初中段阅读书目,开展了读书活动.六月末,学校对八年级学生在此次活动中的读书量进行了抽样调查,如图是根据调查结果绘制的统计图表的一部分.
读书量
频数(人)
频率
1本
4
2本
0.3
3本
4本及以上
10
根据以上信息,解答下列问题:
(1)被调查学生中,读书量为1本的学生数为 人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为 %;
(2)被调查学生的总人数为 人,其中读书量为2本的学生数为 人;
(3)若该校八年级共有550名学生,根据调查结果,估计该校八年级学生读书量为3本的学生人数.
八.频数(率)分布直方图(共2小题)
10.(2021•泰安)为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为( )
A.7h 7h B.8h 7.5h C.7h 7.5h D.8h 8h
11.(2021•兴安盟)某校九年级在“停课不停学”期间,为促进学生身体健康,布置了“云健身”任务.为了解学生完成情况,体育教师随机抽取一班与二班各10名学生进行网上视频跳绳测试,他的测试结果与分析过程如下:
(1)收集数据:两班学生每分钟跳绳个数分别记录如下(二班一个数据不小心被墨水遮盖):
一班:100 94 86 86 84 94 76 69 59 94
二班:99 96 82 96 79 65 96 55 96
(2)整理、描述数据:根据上面得到的两组数据,分别绘制了频数分布直方图如图;
(3)分析数据:两组样本数据的平均数、众数、中位数、方差如表所示:
班级
平均数
众数
中位数
方差
一班
①
94
86
147.76
二班
83.7
96
②
215.21
根据以上数据填出表格中①、②两处的数据并补全二班的频数分布直方图;
(4)得出结论:根据以上信息,判断哪班完成情况较好?说明理由(至少从两个不同角度说明判断的合理性).
九.频数(率)分布折线图(共1小题)
12.(2021•深圳)随机调查某城市30天空气质量指数(AQI),绘制成扇形统计图.
空气质量等级
空气质量指数(AQI)
频数
优
AQI≤50
m
良
50<AQI≤100
15
中
100<AQI≤150
9
差
AQI>150
n
(1)m= ,n= ;
(2)求良的占比;
(3)求差的圆心角;
(4)折线图是一个月内的空气污染指数统计,然后根据这一个月内的统计进行估测一年的空气污染指数为中的天数,从折线图可以得到空气污染指数为中的有9天.
根据折线统计图,一个月(30天)中有 天AQI为中,估测该城市一年(以360天计)中大约有 天AQI为中.
一十.统计表(共1小题)
13.(2017•株洲)株洲市展览馆某天四个时间段进出馆人数统计如下,则馆内人数变化最大时间段为( )
9:00﹣10:00
10:00﹣11:00
14:00﹣15:00
15:00﹣16:00
进馆人数
50
24
55
32
出馆人数
30
65
28
45
A.9:00﹣10:00 B.10:00﹣11:00
C.14:00﹣15:00 D.15:00﹣16:00
一十一.扇形统计图(共2小题)
14.(2021•大庆)小刚家2019年和2020年的家庭支出如下,已知2020年的总支出比2019年的总支出增加了2成,则下列说法正确的是( )
A.2020年教育方面的支出是2019年教育方面的支出的1.4倍
B.2020年衣食方面的支出比2019年衣食方面的支出增加了10%
C.2020年总支出比2019年总支出增加了2%
D.2020年其他方面的支出与2019年娱乐方面的支出相同
15.(2021•青岛)在中国共产党成立一百周年之际,某校举行了以“童心向党”为主题的知识竞赛活动.发现该校全体学生的竞赛成绩(百分制)均不低于60分,现从中随机抽取n名学生的竞赛成绩进行整理和分析(成绩得分用x表示,共分成四组),并绘制成如下的竞赛成绩分组统计表和扇形统计图,其中“90≤x≤100”这组的数据如下:
90,92,93,95,95,96,96,96,97,100.
竞赛成绩分组统计表
组别
竞赛成绩分组
频数
平均分
1
60≤x<70
8
65
2
70≤x<80
a
75
3
80≤x<90
b
88
4
90≤x≤100
10
95
请根据以上信息,解答下列问题:
(1)a= ;
(2)“90≤x≤100”这组数据的众数是 分;
(3)随机抽取的这n名学生竞赛成绩的平均分是 分;
(4)若学生竞赛成绩达到96分以上(含96分)获奖,请你估计全校1200名学生中获奖的人数.
一十二.条形统计图(共2小题)
16.(2021•徐州)第七次全国人口普查的部分结果如图所示.
根据该统计图,下列判断错误的是( )
A.徐州0~14岁人口比重高于全国
B.徐州15~59岁人口比重低于江苏
C.徐州60岁及以上人口比重高于全国
D.徐州60岁及以上人口比重高于江苏
17.(2021•德州)国家航天局消息北京时间2021年5月15日,我国首次火星着陆任务宣告成功,某中学科技兴趣小组为了解本校学生对航天科技的关注程度,在该校内进行了随机调查统计,将调查结果分为不关注、关注、比较关注、非常关注四类,回收、整理好全部调查问卷后,得到下列不完整的统计图:
(1)此次调查中接受调查的人数为 人;
(2)补全图1条形统计图;
(3)扇形统计图中,“关注”对应扇形的圆心角为 ;
(4)该校共有900人,根据调查结果估计该校“关注”,“比较关注”及“非常关注”航天科技的人数共多少人?
一十三.折线统计图(共2小题)
18.(2021•淄博)小明收集整理了本校八年级1班20名同学的定点投篮比赛成绩(每人投篮10次),并绘制了折线统计图,如图所示.那么这次比赛成绩的中位数、众数分别是( )
A.6,7 B.7,7 C.5,8 D.7,8
19.(2021•桂林)某班为了从甲、乙两名同学中选出一名同学代表班级参加学校的投篮比赛,对甲、乙两人进行了5次投篮试投比赛,试投每人每次投球10个.两人5次试投的成绩统计图如图所示.
(1)甲同学5次试投进球个数的众数是多少?
(2)求乙同学5次试投进球个数的平均数;
(3)不需计算,请根据折线统计图判断甲、乙两名同学谁的投篮成绩更加稳定?
(4)学校投篮比赛的规则是每人投球10个,记录投进球的个数.由往届投篮比赛的结果推测,投进8个球即可获奖,但要取得冠军需要投进10个球.请你根据以上信息,从甲、乙两名同学中推荐一名同学参加学校的投篮比赛,并说明推荐的理由.
一十四.统计图的选择(共2小题)
20.(2021•盘锦)空气是由多种气体混合组成的,为了直观地介绍空气各成分的百分比,最适合使用的统计图是( )
A.条形图 B.扇形图 C.折线图 D.直方图
21.(2019•泰州)PM2.5是指空气中直径小于或等于2.5μm的颗粒物,它对人体健康和大气环境造成不良影响,下表是根据《全国城市空气质量报告》中的部分数据制作的统计表,根据统计表回答下列问题.
2017年、2018年7~12 月全国338个地级及以上市PM2.5平均浓度统计表(单位:μg/m3)
月份
年份
7
8
9
10
11
12
2017年
27
24
30
38
51
65
2018年
23
24
25
36
49
53
(1)2018年7~12月PM2.5平均浓度的中位数为 ;
(2)“扇形统计图”和“折线统计图”中,更能直观地反映2018年7~12月PM2.5平均浓度变化过程和趋势的统计图是 ;
(3)某同学观察统计表后说:“2018年7~12月与2017年同期相比,空气质量有所改善”,请用一句话说明该同学得出这个结论的理由.
一十五.其他统计图(共1小题)
22.(2020•陕西)如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是( )
A.4℃ B.8℃ C.12℃ D.16℃
一十六.算术平均数(共2小题)
23.(2021•湘潭)某中学积极响应党的号召,大力开展各项有益于德智体美劳全面发展的活动.小明同学在某学期德智体美劳的评价得分如图所示,则小明同学五项评价的平均得分为( )
A.7分 B.8分 C.9分 D.10分
24.(2021•大庆)某校要从甲,乙两名学生中挑选一名学生参加数学竞赛,在最近的8次选拔赛中,他们的成绩(成绩均为整数,单位:分)如下:
甲:92,95,96,88,92,98,99,100
乙:100,87,92,93,9■,95,97,98
由于保存不当,学生乙有一次成绩的个位数字模糊不清,
(1)求甲成绩的平均数和中位数;
(2)求事件“甲成绩的平均数大于乙成绩的平均数”的概率;
(3)当甲成绩的平均数与乙成绩的平均数相等时,请用方差大小说明应选哪个学生参加数学竞赛.
一十七.加权平均数(共2小题)
25.(2021•抚顺)某校举行学生会成员的竞选活动,对竞选者从民主测评和演讲两个方面进行考核,两项成绩均按百分制计,规定民主测评的成绩占40%,演讲的成绩占60%,小新同学的民主测评和演讲的成绩分别为80分和90分,则他的最终成绩是( )
A.83分 B.84分 C.85分 D.86分
26.(2020•镇江)教育部发布的义务教育质量监测结果报告显示,我国八年级学生平均每天的睡眠时间达9小时及以上的比例为19.4%.某校数学社团成员采用简单随机抽样的方法,抽取了本校八年级50名学生,对他们一周内平均每天的睡眠时间t(单位:小时)进行了调查,将数据整理后绘制成下表:
平均每天的睡眠时间分组
5≤t<6
6≤t<7
7≤t<8
8≤t<9
9小时及以上
频数
1
5
m
24
n
该样本中学生平均每天的睡眠时间达9小时及以上的比例高于全国的这项数据,达到了22%.
(1)求表格中n的值;
(2)该校八年级共400名学生,估计其中平均每天的睡眠时间在7≤t<8这个范围内的人数是多少.
一十八.计算器-平均数(共1小题)
27.(2008•巴中)用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17的平均数约为( )
A.14.15 B.14.16 C.14.17 D.14.20
一十九.中位数(共2小题)
28.(2021•朝阳)某校开展了以“爱我家乡”为主题的艺术活动,从九年级5个班收集到的艺术作品数量(单位:件)分别为48,50,47,44,50,则这组数据的中位数是( )
A.44 B.47 C.48 D.50
29.(2021•梧州)某校为提高学生的安全意识,开展了安全知识竞赛,这次竞赛成绩满分为10分.现从该校七年级中随机抽取10名学生的竞赛成绩,这10名学生的竞赛成绩是:10,9,9,8,10,8,10,9,7,10.
(1)求这10名学生竞赛成绩的中位数和平均数;
(2)该校七年级共400名学生参加了此次竞赛活动,根据上述10名学生竞赛成绩情况估计参加此次竞赛活动成绩为满分的学生人数是多少?
二十.众数(共2小题)
30.(2021•攀枝花)疫情期间,某商店连续7天销售口罩的盒数分别为10,12,14,13,12,12,11.关于这组数据,以下结论错误的是( )
A.众数是12 B.平均数是12 C.中位数是12 D.方差是
31.(2021•广州)某中学为了解初三学生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:
3,5,3,6,3,4,4,5,2,4,5,6,1,3,5,5,4,4,2,4
根据以上数据,得到如下不完整的频数分布表:
次数
1
2
3
4
5
6
人数
1
2
a
6
b
2
(1)表格中的a= ,b= ;
(2)在这次调查中,参加志愿者活动的次数的众数为 ,中位数为 ;
(3)若该校初三年级共有300名学生,根据调查统计结果,估计该校初三年级学生参加志愿者活动的次数为4次的人数.
二十一.极差(共1小题)
32.(2020•巴中)某地区一周内每天的平均气温如下:25℃,27.3℃,21℃,21.4℃,28℃,33.6℃,30℃.这组数据的极差为( )℃
A.8.6 B.9 C.12.2 D.12.6
二十二.方差(共2小题)
33.(2021•绵阳)某同学连续7天测得体温(单位:℃)分别是36.5、36.3、36.7、36.5、36.7、37.1、37.1,关于这一组数据,下列说法正确的是( )
A.众数是36.3 B.中位数是36.6
C.方差是0.08 D.方差是0.09
34.(2021•南通)某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两种西瓜各7份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.
甲、乙两种西瓜得分表
序号
1
2
3
4
5
6
7
甲种西瓜(分)
75
85
86
88
90
96
96
乙种西瓜(分)
80
83
87
90
90
92
94
甲、乙两种西瓜得分统计表
平均数
中位数
众数
甲种西瓜
88
a
96
乙种西瓜
88
90
b
(1)a= ,b= ;
(2)从方差的角度看, 种西瓜的得分较稳定(填“甲”或“乙”);
(3)小明认为甲种西瓜的品质较好些,小军认为乙种西瓜的品质较好些.请结合统计图表中的信息分别写出他们的理由.
二十三.标准差(共1小题)
35.(2019•杭州)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是( )
A.平均数 B.中位数 C.方差 D.标准差
二十四.计算器-标准差与方差(共1小题)
36.(2015•淄博)在学校组织的社会实践活动中,甲、乙两人参加了射击比赛,每人射击七次,命中的环数如表:
序号
一
二
三
四
五
六
七
甲命中的环数(环)
7
8
8
6
9
8
10
乙命中的环数(环)
5
10
6
7
8
10
10
根据以上信息,解决以下问题:
(1)写出甲、乙两人命中环数的众数;
(2)已知通过计算器求得=8,s甲2≈1.43,试比较甲、乙两人谁的成绩更稳定?
二十五.统计量的选择(共2小题)
37.(2021•德州)八年级二班在一次体重测量中,小明体重54.5kg,低于全班半数学生的体重,分析得到结论所用的统计量是( )
A.中位数 B.众数 C.平均数 D.方差
38.(2021•广西)某水果公司以10元/kg的成本价新进2000箱荔枝,每箱质量5kg,在出售荔枝前,需要去掉损坏的荔枝,现随机抽取20箱,去掉损坏荔枝后称得每箱的质量(单位:kg)如下:
4.7 4.8 4.6 4.5 4.8 4.9 4.8 4.7 4.8 4.7
4.8 4.9 4.7 4.8 4.5 4.7 4.7 4.9 4.7 5.0
整理数据:
质量(kg)
4.5
4.6
4.7
4.8
4.9
5.0
数量(箱)
2
1
7
a
3
1
分析数据:
平均数
众数
中位数
4.75
b
c
(1)直接写出上述表格中a,b,c的值.
(2)平均数、众数、中位数都能反映这组数据的集中趋势,请根据以上样本数据分析的结果,任意选择其中一个统计量,估算这2000箱荔枝共损坏了多少千克?
(3)根据(2)中的结果,求该公司销售这批荔枝每千克定为多少元才不亏本(结果保留一位小数)?
二十六.随机事件(共1小题)
39.(2021•沈阳)下列说法正确的是( )
A.任意掷一枚质地均匀的骰子,掷出的点数一定是奇数
B.“从一副扑克牌中任意抽取一张,抽到大王”是必然事件
C.了解一批冰箱的使用寿命,采用抽样调查的方式
D.若平均数相同的甲、乙两组数据,s甲2=0.3,s乙2=0.02,则甲组数据更稳定
二十七.可能性的大小(共1小题)
40.(2020•安顺)下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是( )
A. B.
C. D.
二十八.概率的意义(共1小题)
41.(2021•郴州)下列说法正确的是( )
A.“明天下雨的概率为80%”,意味着明天有80%的时间下雨
B.经过有信号灯的十字路口时,可能遇到红灯,也可能遇到绿灯
C.“某彩票中奖概率是1%”,表示买100张这种彩票一定会有1张中奖
D.小明前几次的数学测试成绩都在90分以上这次数学测试成绩也一定在90分以上
二十九.概率公式(共2小题)
42.(2021•兰州)如图,将一个棱长为3的正方体表面涂上颜色,再把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的概率为( )
A. B. C. D.
43.(2021•锦州)为庆祝建党100周年,某校开展“唱爱国歌曲,扬红船精神”大合唱活动.规律是:将编号为A,B,C的3张卡片(如图所示,卡片除编号和内容外,其他完全相同)背面朝上洗匀后放在桌面上,参加活动的班级从中随机抽取1张,按照卡片上的曲目演唱.
(1)七年一班从3张卡片中随机抽取1张,抽到C卡片的概率为 ;
(2)七年一班从3张卡片中随机抽取1张,记下曲目后放回洗匀,七年二班再从中随机抽取1张,请用列表或画树状图的方法,求这两个班级恰好抽到同一首歌曲的概率.
三十.几何概率(共1小题)
44.(2021•常州)以下转盘分别被分成2个、4个、5个、6个面积相等的扇形,任意转动这4个转盘各1次.已知某转盘停止转动时,指针落在阴影区域的概率是,则对应的转盘是( )
A. B. C. D.
三十一.列表法与树状图法(共2小题)
45.(2021•济南)某学校组织学生到社区开展公益宣传活动,成立了“垃圾分类”“文明出行”“低碳环保”三个宣传队,如果小华和小丽每人随机选择参加其中一个宣传队,则她们恰好选到同一个宣传队的概率是( )
A. B. C. D.
46.(2021•宁夏)2021年,“碳中和、碳达峰”成为高频热词.为了解学生对“碳中和、碳达峰”知识的知晓情况,某校团委随机对该校九年级部分学生进行了问卷调查,调查结果共分成四个类别:A表示“从未听说过”,B表示“不太了解”,C表示“比较了解”,D表示“非常了解”.根据调查统计结果,绘制成两种不完整的统计图.请结合统计图,回答下列问题.
(1)参加这次调查的学生总人数为 人;
(2)扇形统计图中,B部分扇形所对应的圆心角是 ;
(3)将条形统计图补充完整;
(4)在D类的学生中,有2名男生和2名女生,现需从这4名学生中随机抽取2名“碳中和、碳达峰”知识的义务宣讲员,请利用画树状图或列表的方法,求所抽取的2名学生恰好是1名男生和1名女生的概率.
三十二.游戏公平性(共1小题)
47.(2021•青岛)为践行青岛市中小学生“十个一”行动,某校举行文艺表演,小静和小丽想合唱一首歌.小静想唱《红旗飘飘》,而小丽想唱《大海啊,故乡》.她们想通过做游戏的方式来决定合唱哪一首歌,于是一起设计了一个游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,同时转动两个转盘,若两个指针指向的数字之积小于4,则合唱《大海啊,故乡》,否则合唱《红旗飘飘》;若指针刚好落在分割线上,则需要重新转动转盘,请用列表或画树状图的方法说明这个游戏是否公平.
三十三.利用频率估计概率(共2小题)
48.(2021•呼和浩特)动物学家通过大量的调查,估计某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,据此若设刚出生的这种动物共有a只,则20年后存活的有 只,现年20岁的这种动物活到25岁的概率是 .
49.(2021•盐城)圆周率π是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对π有过深入的研究.目前,超级计算机已计算出π的小数部分超过31.4万亿位.有学者发现,随着π小数部分位数的增加,0~9这10个数字出现的频率趋于稳定接近相同.
(1)从π的小数部分随机取出一个数字,估计数字是6的概率为 ;
(2)某校进行校园文化建设,拟从以上4位科学家的画像中随机选用2幅,求其中有一幅是祖冲之的概率.(用画树状图或列表方法求解)
三十四.模拟实验(共1小题)
50.(2021•宜昌)社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里装有几十个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象如图所示,经分析可以推断盒子里个数比较多的是 .(填“黑球”或“白球”)
2022年中考数学考前30天迅速提分复习方案(全国通用)
专题1.9统计与概率(全国中考34个考点真题训练)
1.调查收集数据的过程与方法
(1)在统计调查中,我们利用调查问卷收集数据,利用表格整理数据,利用统计图描述数据,通过分析表和图来了解情况.
(2)统计图通常有条形统计图,扇形统计图,折线统计图.
(3)设计调查问卷分以下三步:①确定调查目的;②选择调查对象;③设计调查问题.
(4)统计调查的一般过程:
①问卷调查法﹣﹣﹣﹣﹣收集数据;
②列统计表﹣﹣﹣﹣﹣整理数据;
③画统计图﹣﹣﹣﹣﹣描述数据.
2.全面调查与抽样调查
1、统计调查的方法有全面调查(即普查)和抽样调查.
2、全面调查与抽样调查的优缺点:①全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.②抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.
3、如何选择调查方法要根据具体情况而定.一般来讲:通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.其一,调查者能力有限,不能进行普查.如:个体调查者无法对全国中小学生身高情况进行普查.其二,调查过程带有破坏性.如:调查一批灯泡的使用寿命就只能采取抽样调查,而不能将整批灯泡全部用于实验.其三,有些被调查的对象无法进行普查.如:某一天,全国人均讲话的次数,便无法进行普查.
3.总体、个体、样本、样本容量
(1)定义
①总体:我们把所要考察的对象的全体叫做总体;
②个体:把组成总体的每一个考察对象叫做个体;
③样本:从总体中取出的一部分个体叫做这个总体的一个样本;
④样本容量:一个样本包括的个体数量叫做样本容量.
(2)关于样本容量
样本容量只是个数字,没有单位.
4.抽样调查的可靠性
(1)抽样调查是实际中经常采用的调查方式.
(2)如果抽取的样本得当,就能很好地反映总体的情况,否则抽样调查的结果会偏离总体情况.
(3)抽样调查除了具有花费少,省时的特点外,还适用一些不宜使用全面调查的情况(如具有破坏性的调查).
(4)分层抽样获取的样本与直接进行简单的随机抽样相比一般能更好地反映总体.其特点是:通过划类分层,增大了各类型中单位间的共同性,容易抽出具有代表性的调查样本,该方法适用于总体情况复杂,各单位之间差异较大,单位较多的情况.
5.用样本估计总体
用样本估计总体是统计的基本思想.
1、用样本的频率分布估计总体分布:
从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.
2、用样本的数字特征估计总体的数字特征(主要数据有众数、中位数、平均数、标准差与方差 ).
一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
6.频数与频率
(1)频数是指每个对象出现的次数.
(2)频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数
一般称落在不同小组中的数据个数为该组的频数,频数与数据总数的比值为频率.频率反映了各组频数的大小在总数中所占的分量.
7.频数(率)分布表
1、在统计数据时,经常把数据按照不同的范围分成几个组,分成的组的个数称为组数,每一组两个端点的差称为组距,称这样画出的统计图表为频数分布表.
2、列频率分布表的步骤:
(1)计算极差,即计算最大值与最小值的差.
(2)决定组距与组数(组数与样本容量有关,一般来说样本容量越大,分组就越多,样本容量不超过100时,按数据的多少,常分成5~12组).
(3)将数据分组.
(4)列频率分布表.
8.频数(率)分布直方图
画频率分布直方图的步骤:
(1)计算极差,即计算最大值与最小值的差.(2)决定组距与组数(组数与样本容量有关,一般来说样本容量越大,分组就越多,样本容量不超过100时,按数据的多少,常分成5~12组).(3)确定分点,将数据分组.(4)列频率分布表.(5)绘制频率分布直方图.
注:①频率分布表列出的是在各个不同区间内取值的频率,频率分布直方图是用小长方形面积的大小来表示在各个区间内取值的频率.直角坐标系中的纵轴表示频率与组距的比值,即小长方形面积=组距×=频率.②各组频率的和等于1,即所有长方形面积的和等于1.③频率分布表在数量表示上比较确切,但不够直观、形象,不利于分析数据分布的总体态势.④从频率分布直方图可以清楚地看出数据分布的总体态势,但是从直方图本身得不出原始的数据内容.
9.频数(率)分布折线图
一般利用直方图画频数分布折线图,在频数分布直方图中,把每个小长方形上面的一条边的中点顺次连接起来,得到频数折线图.
注意:折线图要与横轴相交,方法是在直方图的左右两边各延伸一个假想组,并将频数折线两端连接到假想组中点,它主要显示数据的变化趋势.
10.统计表
统计表可以将大量数据的分类结果清晰,一目了然地表达出来.
统计调查所得的原始资料,经过整理,得到说明社会现象及其发展过程的数据,把这些数据按一定的顺序排列在表格中,就形成“统计表”.统计表是表现数字资料整理结果的最常用的一种表格. 统计表是由纵横交叉线条所绘制的表格来表现统计资料的一种形式.
11.扇形统计图
(1)扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
(2)扇形图的特点:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.
(3)制作扇形图的步骤
①根据有关数据先算出各部分在总体中所占的百分数,再算出各部分圆心角的度数,公式是各部分扇形圆心角的度数=部分占总体的百分比×360°. ②按比例取适当半径画一个圆;按扇形圆心角的度数用量角器在圆内量出各个扇形的圆心角的度数;
④在各扇形内写上相应的名称及百分数,并用不同的标记把各扇形区分开来.
12.条形统计图
(1)定义:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.
(2)特点:从条形图可以很容易看出数据的大小,便于比较.
(3)制作条形图的一般步骤:
①根据图纸的大小,画出两条互相垂直的射线.
②在水平射线上,适当分配条形的位置,确定直条的宽度和间隔.
③在与水平射线垂直的射线上,根据数据大小的具体情况,确定单位长度表示多少.
④按照数据大小,画出长短不同的直条,并注明数量.
13.折线统计图
(1)定义:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.
(2)特点:折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.
(3)绘制折线图的步骤
①根据统计资料整理数据.
②先画纵轴,后画横轴,纵、横都要有单位,按纸面的大小来确定用一定单位表示一定的数量. ③根据数量的多少,在纵、横轴的恰当位置描出各点,然后把各点用线段顺序连接起来.
14.统计图的选择
统计图的选择:即根据常用的几种统计图反映数据的不同特征结合实际来选择.
(1)扇形统计图的特点:
①用扇形的面积表示部分在总体中所占的百分比.②易于显示每组数据相对于总数的大小.
(2)条形统计图的特点:
①条形统计图能清楚地表示出每个项目中的具体数目.②易于比较数据之间的差别.
(3)折线统计图的特点:
①能清楚地反映事物的变化情况.②显示数据变化趋势.
根据具体问题选择合适的统计图,可以使数据变得清晰直观.不恰当的图不仅难以达到期望的效果,有时还会给人们以误导.因此要想准确地反映数据的不同特征,就要选择合适的统计图.
15.其他统计图
(1)根据调查项目和调查目的,设计出用于记录数据的统计表格或对统计表格中缺少的数据进行完善.表格要求简明,覆盖所有调查数据.
(2)象形统计图是表现统计数字大小和变动的各种图形总称.其中有条形统计图、扇形统计图、折线统计图、象形图等.在统计学中把利用统计图形表现统计资料的方法叫做统计图示法.其特点是:形象具体、简明生动、通俗易懂、一目了然.其主要用途有:表示现象间的对比关系;揭露总体结构;检查计划的执行情况;揭示现象间的依存关系,反映总体单位的分配情况;说明现象在空间上的分布情况.一般采用直角坐标系.横坐标用来表示事物的组别或自变量x,纵坐标常用来表示事物出现的次数或因变量y;或采用角度坐标(如圆形图)、地理坐标(如地形图)等.按图尺的数字性质分类,有实数图、累积数图、百分数图、对数图、坐标图、指数图等;其结构包括图名、图目(图中的标题)、图尺(坐标单位)、各种图线(基线、轮廓线、指导线等)、图注(图例说明、资料来源等)等.
16.算术平均数
(1)平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.
(2)算术平均数:对于n个数x1,x2,…,xn,则=(x1+x2+…+xn)就叫做这n个数的算术平均数.
(3)算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数.
17.加权平均数
(1)加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则x1w1+x2w2+…+xnwnw1+w2+…+wn叫做这n个数的加权平均数.
(2)权的表现形式,一种是比的形式,如4:3:2,另一种是百分比的形式,如创新占50%,综合知识占30%,语言占20%,权的大小直接影响结果.
(3)数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.
(4)对于一组不同权重的数据,加权平均数更能反映数据的真实信息.
18.计算器-平均数
(1)如果是普通计算器,那么只能把所有的数字相加,然后除以数字的个数.
(2)如果是科学记算器,那么可以用如下方法:
①调整计算器的模式为STAT模式.
②依次输入数据,每次输入数据后按DATA键确认数据的输入.
③输入完毕后,按x¯键,即可获得平均数了.
(3)由于计算器的型号不同,可以按照说明书中的方法进行操作.
19.中位数
(1)中位数:
将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.
如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
(2)中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息.
(3)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中出现,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.
20.众数
(1)一组数据中出现次数最多的数据叫做众数.
(2)求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.
(3)众数不易受数据中极端值的影响.众数也是数据的一种代表数,反映了一组数据的集中程度,众数可作为描述一组数据集中趋势的量..
21.极差
(1)极差是指一组数据中最大数据与最小数据的差.
极差=最大值﹣最小值.
(2)极差是刻画数据离散程度的一个统计量.它只能反映数据的波动范围,不能衡量每个数据的变化情况.
(3)极差的优势在于计算简单,但它受极端值的影响较大.
22.方差
(1)方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.
(2)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s2来表示,计算公式是:
s2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2](可简单记忆为“方差等于差方的平均数”)
(3)方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
23.标准差
(1)标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.
公式:s=s2=1n[(x1﹣x¯)2+(x2﹣x¯)2+…+(xn﹣x¯)2]
(2)标准差是反应一组数据离散程度最常用的一种量化形式,是表示精密确的最要指标.标准差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
24.计算器-标准差与方差
由于不同的计算器,其操作不完全相同,可以根据计算器的说明书进行操作.
以如图的计算器为例说明:
首先,按2ndf键,再按on/c(清零)键,即进入统计状态,右上角有stat显示.
接着,进入数据输入存
储状态,输入一个数据后按M+键,即对数据进行储存,可显示1,表示输入了第一个数据,依次再输入,
显示2,为第二个数据.数据输入完成后,就可进行计算,按2ndf,再按RM,即显示为平均值,其他同此.
先按2ndf键再按其他键,表示选择的是该键上方的功能.
25.统计量的选择
(1)一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定.但这并不是绝对的,有时多数数据相对集中,整体波动水平较小,但个别数据的偏离仍可能极大地影响极差、方差或标准差的值.从而导致这些量度数值较大,因此在实际应用中应根据具体问题情景进行具体分析,选用适当的量度刻画数据的波动情况,一般来说,只有在两组数据的平均数相等或比较接近时,才用极差、方差或标准差来比较两组数据的波动大小.
(2)平均数、众数、中位数和极差、方差在描述数据时的区别:①数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,极差、方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数,描述了数据的离散程度.②极差和方差的不同点:极差表示一组数据波动范围的大小,一组数据极差越大,则它的波动范围越大;方差和标准差反映了一组数据与其平均值的离散程度的大小.方差(或标准差)越大,数据的历算程度越大,稳定性越小;反之,则离散程度越小,稳定性越好.
26.随机事件
(1)确定事件
事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.
(2)随机事件
在一定条件下,可能发生也可能不发生的事件,称为随机事件.
(3)事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,
①必然事件发生的概率为1,即P(必然事件)=1;
②不可能事件发生的概率为0,即P(不可能事件)=0;
③如果A为不确定事件(随机事件),那么0<P(A)<1.
27.可能性的大小
随机事件发生的可能性(概率)的计算方法:
(1)理论计算又分为如下两种情况:
第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算.
(2)实验估算又分为如下两种情况:
第一种:利用实验的方法进行概率估算.要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率.
第二种:利用模拟实验的方法进行概率估算.如,利用计算器产生随机数来模拟实验.
28.概率的意义
(1)一般地,在大量重复实验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p.
(2)概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.
(3)概率取值范围:0≤p≤1.
(4)必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.
(4)事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.
(5)通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题.
29.概率公式
(1)随机事件A的概率P(A)=.
(2)P(必然事件)=1.
(3)P(不可能事件)=0.
30.几何概率
所谓几何概型的概率问题,是指具有下列特征的一些随机现象的概率问题:设在空间上有一区域G,又区域g包含在区域G内(如图),而区域G与g都是可以度量的(可求面积),现随机地向G内投掷一点M,假设点M必落在G中,且点M落在区域G的任何部分区域g内的概率只与g的度量(长度、面积、体积等)成正比,而与g的位置和形状无关.具有这种性质的随机试验(掷点),称为几何概型.关于几何概型的随机事件“向区域G中任意投掷一个点M,点M落在G内的部分区域g”的概率P定义为:g的度量与G的度量之比,即 P=g的测度G的测度
简单来说:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.
31.列表法与树状图法
(1)当试验中存在两个元素且出现的所有可能的结果较多时,我们常用列表的方式,列出所有可能的结果,再求出概率.
(2)列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
(3)列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.
(4)树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的枝丫形式,最末端的枝丫个数就是总的可能的结果n.
(5)当有两个元素时,可用树形图列举,也可以列表列举.
32.游戏公平性
(1)判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.
(2)概率=.
33.利用频率估计概率
(1)大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
(2)用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.
(3)当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.
34.模拟实验
(1)在一些有关抽取实物实验中通常用摸取卡片代替了实际的物品或人抽取,这样的实验称为模拟实验.
(2)模拟实验是用卡片、小球编号等形式代替实物进行实验,或用计算机编号等进行实验,目的在于省时、省力,但能达到同样的效果.
(3)模拟实验只能用更简便方法完成,验证实验目的,但不能改变实验目的,这部分内容根据《新课标》要求,只要设计出一个模拟实验即可.
【真题训练】
一.调查收集数据的过程与方法(共1小题)
1.(2020•安顺)2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是( )
A.直接观察 B.实验 C.调查 D.测量
【分析】直接利用调查数据的方法分析得出答案.
【解答】解:一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.
获得这组数据的方法是:调查.
故选:C.
【点评】此题主要考查了调查收集数据的过程与方法,正确掌握基本调查方法是解题关键.
二.全面调查与抽样调查(共1小题)
2.(2021•盘锦)下列调查中,适宜采用抽样调查的是( )
A.调查某班学生的身高情况
B.调查亚运会100m游泳决赛运动员兴奋剂的使用情况
C.调查某批汽车的抗撞击能力
D.调查一架“歼20”隐形战斗机各零部件的质量
【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【解答】解:A.调查某班学生的身高情况,适合全面调查,故本选项不符合题意;
B.调查亚运会100m游泳决赛运动员兴奋剂的使用情况,适合全面调查,故本选项不符合题意;
C.调查某批汽车的抗撞击能力,适合抽样调查,故本选项符合题意;
D.调查一架“歼20”隐形战斗机各零部件的质量,适合全面调查,故本选项不符合题意.
故选:C.
【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
三.总体、个体、样本、样本容量(共1小题)
3.(2021•张家界)某校有4000名学生,随机抽取了400名学生进行体重调查,下列说法错误的是( )
A.总体是该校4000名学生的体重
B.个体是每一个学生
C.样本是抽取的400名学生的体重
D.样本容量是400
【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【解答】解:A.总体是该校4000名学生的体重,说法正确,故A不符合题意;
B.个体是每一个学生的体重,原来的说法错误,故B符合题意;
C.样本是抽取的400名学生的体重,说法正确,故C不符合题意;
D.样本容量是400,说法正确,故D不符合题意.
故选:B.
【点评】此题主要考查了总体、个体、样本、样本容量,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
四.抽样调查的可靠性(共1小题)
4.(2018•重庆)为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是( )
A.企业男员工
B.企业年满50岁及以上的员工
C.用企业人员名册,随机抽取三分之一的员工
D.企业新进员工
【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.
【解答】解:为调查某大型企业员工对企业的满意程度,根据样本要随机,不能抽查特定人群,所以选取要最具代表性的样本.
A、选取企业男员工为样本进行抽查,对抽取的对象划定了性别范围,不具有代表性,故A错误;
B、选取企业年满50岁及以上的员工为样本进行抽查,对抽取的对象划定了年龄范围,不具有代表性,故B错误;
C、用企业人员名册,随机抽取三分之一的员工进行调查具有代表性,故C正确;
D、选取企业新进员工为样本进行抽查,对抽取的对象进行限制,只抽查新员工,未抽查老员工,不具有代表性,故D错误;
故选:C.
【点评】此题主要考查了抽样调查的可靠性,注意抽样必须具有代表性以及随机性.
五.用样本估计总体(共2小题)
5.(2021•青岛)在一个不透明的袋中装有若干个红球和4个黑球,每个球除颜色外完全相同,摇匀后从中摸出一个球,记下颜色后再放回袋中,不断重复这一过程,共摸球100次,其中有40次摸到黑球,估计袋中红球的个数是 6 .
【分析】利用频率估计概率可估计摸到黑球的概率为,然后根据概率公式构建方程求解即可.
【解答】解:设袋中红球的个数是x个,根据题意得:
=,
解得:x=6,
经检验:x=6是分式方程的解,
即估计袋中红球的个数是6个,
故答案为6.
【点评】本题考查了利用频率估计概率:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随试验次数的增多,值越来越精确.
6.(2020•黔南州)勤劳是中华民族的传统美德,学校要求学生在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了七年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果绘制了如图两幅不完整的统计图:
根据统计图提供的信息,解答下列问题:
(1)本次共调查了 50 名学生;
(2)根据以上信息直接在答题卡上补全条形统计图;
(3)扇形统计图中m= 32 ,类别D所对应的扇形圆心角α的度数是 57.6 度;
(4)若该校七年级共有400名学生,根据抽样调查的结果,估计该校七年级有多少名学生寒假在家做家务的总时间不低于20小时?
【分析】(1)根据A类的人数和所占的百分比,可以求得本次调查的人数;
(2)根据统计图中的数据,可以得到B类和D类的人数,然后即可将频数分布直方图补充完整;
(3)根据统计图中的数据,可以得到m和α的值;
(4)根据统计图中的数据,可以计算出该校七年级有多少名学生寒假在家做家务的总时间不低于20小时.
【解答】解:(1)本次共调查了10÷20%=50名学生,
故答案为:50;
(2)B类学生有:50×24%=12(人),
D类学生有:50﹣10﹣12﹣16﹣4=8(人),
补全的条形统计图如右图所示;
(3)m%=16÷50×100%=32%,
即m=32,
类别D所对应的扇形圆心角α的度数是:360°×=57.6°,
故答案为:32,57.6;
(4)400×=224(人),
即该校七年级有224名学生寒假在家做家务的总时间不低于20小时.
【点评】本题考查扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
六.频数与频率(共1小题)
7.(2021•乐山)在一次心理健康教育活动中,张老师随机抽取了40名学生进行了心理健康测试,并将测试结果按“健康、亚健康、不健康”绘制成下列表格,其中测试结果为“健康”的频率是( )
类型
健康
亚健康
不健康
数据(人)
32
7
1
A.32 B.7 C. D.
【分析】根据频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=频数÷总数,进而得出答案.
【解答】解:∵抽取了40名学生进行了心理健康测试,测试结果为“健康”的有32人,
∴测试结果为“健康”的频率是:=.
故选:D.
【点评】此题主要考查了频数与频率,正确掌握频率的求法是解题关键.
七.频数(率)分布表(共2小题)
8.(2020•赤峰)某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数量相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:
某校60名学生体育测试成绩频数分布表
成绩
划记
频数
百分比
优秀
a
30%
良好
30
b
合格
9
15%
不合格
3
5%
合计
60
60
100%
如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为 240 人.
【分析】根据频数分布表数据可得a和b的值,进而可以估计该校七年级学生身体素质良好及以上的人数.
【解答】解:根据频数分布表可知:
9÷15%=60,
∴a=60×30%=18,
b=1﹣30%﹣15%﹣5%=50%,
∴300×(30%+50%)=240(人).
答:估计该校七年级学生身体素质良好及以上的人数为240人.
故答案为:240.
【点评】本题考查了频数分布表、总体、个体、样本、样本容量、用样本估计总体,解决本题的关键是掌握统计的相关知识.
9.(2020•大连)某校根据《教育部基础教育课程教材发展中心中小学生阅读指导目录(2020版)》公布的初中段阅读书目,开展了读书活动.六月末,学校对八年级学生在此次活动中的读书量进行了抽样调查,如图是根据调查结果绘制的统计图表的一部分.
读书量
频数(人)
频率
1本
4
2本
0.3
3本
4本及以上
10
根据以上信息,解答下列问题:
(1)被调查学生中,读书量为1本的学生数为 4 人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为 20 %;
(2)被调查学生的总人数为 50 人,其中读书量为2本的学生数为 15 人;
(3)若该校八年级共有550名学生,根据调查结果,估计该校八年级学生读书量为3本的学生人数.
【分析】(1)直接根据图表信息可得;
(2)用4本及以上对应的频数除以所占百分比可得总人数,再乘以读书量为2本的频率即可;
(3)求出读书量为3本的人数,除以样本人数50,再乘以全校总人数550可得结果.
【解答】解:(1)由图表可知:
被调查学生中,读书量为1本的学生数为4人,
读书量达到4本及以上的学生数占被调查学生总人数的百分比为20%,
故答案为:4;20;
(2)10÷20%=50人,
50×0.3=15人,
∴被调查学生的总人数为50人,其中读书量为2本的学生数为15人,
故答案为:50;15;
(3)(50﹣4﹣10﹣15)÷50×550=231人,
估计该校八年级学生读书量为3本的学生有231人.
【点评】本题考查了频数统计表和扇形统计图,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.
八.频数(率)分布直方图(共2小题)
10.(2021•泰安)为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为( )
A.7h 7h B.8h 7.5h C.7h 7.5h D.8h 8h
【分析】直接利用众数以及中位数的概念分别分析求出即可.
【解答】解:∵7h出现了19次,出现的次数最多,
∴所调查学生睡眠时间的众数是7h;
∵共有50名学生,中位数是第25、26个数的平均数,
∴所调查学生睡眠时间的中位数是=7.5(h).
故选:C.
【点评】此题主要考查了众数、中位数的概念,正确把握中位数的概念是解题关键.
11.(2021•兴安盟)某校九年级在“停课不停学”期间,为促进学生身体健康,布置了“云健身”任务.为了解学生完成情况,体育教师随机抽取一班与二班各10名学生进行网上视频跳绳测试,他的测试结果与分析过程如下:
(1)收集数据:两班学生每分钟跳绳个数分别记录如下(二班一个数据不小心被墨水遮盖):
一班:100 94 86 86 84 94 76 69 59 94
二班:99 96 82 96 79 65 96 55 96
(2)整理、描述数据:根据上面得到的两组数据,分别绘制了频数分布直方图如图;
(3)分析数据:两组样本数据的平均数、众数、中位数、方差如表所示:
班级
平均数
众数
中位数
方差
一班
①
94
86
147.76
二班
83.7
96
②
215.21
根据以上数据填出表格中①、②两处的数据并补全二班的频数分布直方图;
(4)得出结论:根据以上信息,判断哪班完成情况较好?说明理由(至少从两个不同角度说明判断的合理性).
【分析】(3)根据(1)中一班的数据,可以计算出表格中①对应的数据;根据(1)中二班的数据和(2)中二班对应的频数分布直方图,可以得到表格中②对应的数据;再根据(3)中二班对应的平均数,可以计算出被遮盖的数据,从而可以将频数分布直方图补充完整;
(4)先判断,然后说明理由即可,注意本题答案不唯一,只要合理即可.
【解答】解:(3)表格中①对应的数据为:=84.2,
由(1)中二班的数据和(2)中二班对应的频数分布直方图可得,表格中②对应的数据是(82+96)÷2=89,
由二班的平均数是83.7可得,被墨水遮盖的数据是:83.7×10﹣(99+96+82+96+79+65+96+55+96)=837﹣764=73,
则二班60~70对应的频数是1,70~80对应的频数是2,补全的频数分布直方图如右图所示;
(4)一班完成情况较好,
理由:一班的平均数高于二班,说明一班的成绩好于二班;一班的方差小于二班,说明一班的同学成绩波动小,大部分同学都在参加锻炼,故一班的完成情况好.
【点评】本题考查频数分布直方图、加权平均数、中位数、众数、方差,利用数形结合的思想解答是解答本题的关键.
九.频数(率)分布折线图(共1小题)
12.(2021•深圳)随机调查某城市30天空气质量指数(AQI),绘制成扇形统计图.
空气质量等级
空气质量指数(AQI)
频数
优
AQI≤50
m
良
50<AQI≤100
15
中
100<AQI≤150
9
差
AQI>150
n
(1)m= 4 ,n= 2 ;
(2)求良的占比;
(3)求差的圆心角;
(4)折线图是一个月内的空气污染指数统计,然后根据这一个月内的统计进行估测一年的空气污染指数为中的天数,从折线图可以得到空气污染指数为中的有9天.
根据折线统计图,一个月(30天)中有 9 天AQI为中,估测该城市一年(以360天计)中大约有 108 天AQI为中.
【分析】(1)根据扇形统计图中优的圆心角度数即可求出m的值,再用总数减去优、良、中的天数即可求出n的值;
(2)频率就是频数除以总数,所以用表中良的天数除以总数即可;
(3)用差的占比乘以360度即可;
(4)要先算出样本中有9天AQI为中,再估测该城市一年(以360天计)中大约有108天AQI为中.
【解答】解:(1)根据题意,得m=×30=4,
所以n=30﹣4﹣15﹣9=2,
故答案为:4,2;
(2)良的占比=×100%=50%;
(3)差的圆心角=×360°=24°;
(4)根据折线图,一个月(30天)中有9天AQI为中,估测该城市一年(以360天计)中大约有360×=108(天)AQI为中.
故答案为:9,108.
【点评】本题是一道利用统计知识解答实际问题的重点考题,主要考查利用统计图表,处理数据的能力和利用样本估计总体的思想.解答这类题目,观察图表要细致,对应的图例及其关系不能错位,计算要认真准确.
一十.统计表(共1小题)
13.(2017•株洲)株洲市展览馆某天四个时间段进出馆人数统计如下,则馆内人数变化最大时间段为( )
9:00﹣10:00
10:00﹣11:00
14:00﹣15:00
15:00﹣16:00
进馆人数
50
24
55
32
出馆人数
30
65
28
45
A.9:00﹣10:00 B.10:00﹣11:00
C.14:00﹣15:00 D.15:00﹣16:00
【分析】直接利用统计表中人数的变化范围得出馆内人数变化最大时间段.
【解答】解:由统计表可得:10:00﹣11:00,进馆24人,出馆65人,差值最大,
故选:B.
【点评】此题主要考查了统计表,正确利用表格获取正确信息是解题关键.
一十一.扇形统计图(共2小题)
14.(2021•大庆)小刚家2019年和2020年的家庭支出如下,已知2020年的总支出比2019年的总支出增加了2成,则下列说法正确的是( )
A.2020年教育方面的支出是2019年教育方面的支出的1.4倍
B.2020年衣食方面的支出比2019年衣食方面的支出增加了10%
C.2020年总支出比2019年总支出增加了2%
D.2020年其他方面的支出与2019年娱乐方面的支出相同
【分析】设2019年总支出为a元,则2020年总支出为1.2a元,根据扇形统计图中的信息逐项分析即可.
【解答】解:设2019年总支出为a元,则2020年总支出为1.2a元,
A.2019年教育总支出为0.3a,2020年教育总支出为1.2a×35%=0.42a,0.42a÷(0.3a)=1.4,故该项正确,符合题意;
B.2019年衣食方面总支出为0.3a,2020年衣食方面总支出为1.2a×40%=0.48a,(0.48a﹣0.3a)÷0.3a=60%,故该项错误,不符合题意;
C.2020年总支出比2019年总支出增加了20%,故该项错误,不符合题意;
D.2020年其他方面的支出为1.2a×15%=0.18a,2019年娱乐方面的支出为0.15a,故该项错误,不符合题意;
故选:A.
【点评】本题考查扇形统计图,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
15.(2021•青岛)在中国共产党成立一百周年之际,某校举行了以“童心向党”为主题的知识竞赛活动.发现该校全体学生的竞赛成绩(百分制)均不低于60分,现从中随机抽取n名学生的竞赛成绩进行整理和分析(成绩得分用x表示,共分成四组),并绘制成如下的竞赛成绩分组统计表和扇形统计图,其中“90≤x≤100”这组的数据如下:
90,92,93,95,95,96,96,96,97,100.
竞赛成绩分组统计表
组别
竞赛成绩分组
频数
平均分
1
60≤x<70
8
65
2
70≤x<80
a
75
3
80≤x<90
b
88
4
90≤x≤100
10
95
请根据以上信息,解答下列问题:
(1)a= 12 ;
(2)“90≤x≤100”这组数据的众数是 96 分;
(3)随机抽取的这n名学生竞赛成绩的平均分是 82.6 分;
(4)若学生竞赛成绩达到96分以上(含96分)获奖,请你估计全校1200名学生中获奖的人数.
【分析】(1)根据第1组的频数和百分比求出抽取的总数,总数乘以第2组的百分比即可得a的值;
(2)根据众数的意义即可求解;
(3)先求出第3组的频数,根据平均数的意义即可求解;
(4)求出学生竞赛成绩达到96分以上学生所占的百分比,即可估计总体中学生竞赛成绩达到96分以上学生所占的百分比,进而求出人数.
【解答】解:(1)8÷16%=50(名),
50×24%=12(名),
因此a=12,
故答案为:12;
(2)“90≤x≤100”这组的数据中出现最多的是96,
∴“90≤x≤100”这组数据的众数是96分,
故答案为:96;
(3)第3组的频数b=50﹣8﹣12﹣10=20,
随机抽取的这n名学生竞赛成绩的平均分是:×(65×8+75×12+88×20+95×10)=82.6(分),
故答案为:82.6;
(4)1200×=120(人),
答:估计全校1200名学生中获奖的人数有120人.
【点评】本题考查扇形统计图、众数、平均数以及样本估计总体,掌握平均数、众数的意义和计算方法是正确解答的前提.
一十二.条形统计图(共2小题)
16.(2021•徐州)第七次全国人口普查的部分结果如图所示.
根据该统计图,下列判断错误的是( )
A.徐州0~14岁人口比重高于全国
B.徐州15~59岁人口比重低于江苏
C.徐州60岁及以上人口比重高于全国
D.徐州60岁及以上人口比重高于江苏
【分析】根据条形统计图分析数据解答判断即可.
【解答】解:根据图表内容可知,
徐州0~14岁人口比重高于全国,故A正确,不符合题意;
徐州15~59岁人口比重低于江苏,故B正确,不符合题意;
徐州60岁及以上人口比重高于全国,故C正确,不符合题意;
徐州60岁及以上人口比重低于江苏,故D错误,符合题意;
故选:D.
【点评】此题考查了条形统计图,根据条形统计图分析出正确的数据是解题的关键.
17.(2021•德州)国家航天局消息北京时间2021年5月15日,我国首次火星着陆任务宣告成功,某中学科技兴趣小组为了解本校学生对航天科技的关注程度,在该校内进行了随机调查统计,将调查结果分为不关注、关注、比较关注、非常关注四类,回收、整理好全部调查问卷后,得到下列不完整的统计图:
(1)此次调查中接受调查的人数为 50 人;
(2)补全图1条形统计图;
(3)扇形统计图中,“关注”对应扇形的圆心角为 43.2° ;
(4)该校共有900人,根据调查结果估计该校“关注”,“比较关注”及“非常关注”航天科技的人数共多少人?
【分析】(1)从统计图中可以得到不关注、关注、比较关注的共有34人,占调查人数的68%,可求出调查人数;
(2)接受调查的人数乘以非常关注的百分比即可得到非常关注的人数,即可补全统计图;
(3)360°乘以关注”的比例即可得到“关注”对应扇形的圆心角度数;
(4)样本估计总体,样本中“关注”,“比较关注”及“非常关注”的占比68%,乘以该校人数900人即可求解.
【解答】解:(1)不关注、关注、比较关注的共有4+6+24=34(人),占调查人数的1﹣32%=68%,
∴此次调查中接受调查的人数为34÷68%=50(人),
故答案为:50;
(2)50×32%=16(人),
补全统计图如图所示:
(3)360°×=43.2°,
故答案为:43.2°;
(4)900×=828(人),
答:估计该校“关注”,“比较关注”及“非常关注”航天科技的人数共有828人.
【点评】考查扇形统计图、条形统计图的意义和制作方法,从两个统计图中获取数量和数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.
一十三.折线统计图(共2小题)
18.(2021•淄博)小明收集整理了本校八年级1班20名同学的定点投篮比赛成绩(每人投篮10次),并绘制了折线统计图,如图所示.那么这次比赛成绩的中位数、众数分别是( )
A.6,7 B.7,7 C.5,8 D.7,8
【分析】将八年级1班20名同学的定点投篮比赛成绩按照从小到大的顺序排列,根据众数、中位数的定义求解即可.
【解答】解:八年级1班20名同学的定点投篮比赛成绩按照从小到大的顺序排列如下:
3,3,5,5,5,5,6,6,6,7,7,7,7,7,7,8,8,8,9,9,
这次比赛成绩的中位数是=7,众数是7,
故选:B.
【点评】此题考查了折线统计图、中位数以及众数,根据折线统计图得出解题所需数据并熟练掌握众数、中位数定义是解题的关键.
19.(2021•桂林)某班为了从甲、乙两名同学中选出一名同学代表班级参加学校的投篮比赛,对甲、乙两人进行了5次投篮试投比赛,试投每人每次投球10个.两人5次试投的成绩统计图如图所示.
(1)甲同学5次试投进球个数的众数是多少?
(2)求乙同学5次试投进球个数的平均数;
(3)不需计算,请根据折线统计图判断甲、乙两名同学谁的投篮成绩更加稳定?
(4)学校投篮比赛的规则是每人投球10个,记录投进球的个数.由往届投篮比赛的结果推测,投进8个球即可获奖,但要取得冠军需要投进10个球.请你根据以上信息,从甲、乙两名同学中推荐一名同学参加学校的投篮比赛,并说明推荐的理由.
【分析】(1)根据成绩统计图得出甲同学5次试投进球的个数及众数的定义即可求解;
(2)根据成绩统计图得出乙同学5次试投进球的个数及平均的定义即可求解;
(3)根据折线统计图的波动情况可判断甲、乙两名同学谁的投篮成绩更加稳定;
(4)本题答案不唯一,说理符合实际即可.
【解答】解:(1)甲同学5次试投进球的个数分别为:8,7,8,9,8,
∴众数是8;
(2)乙同学5次试投进球的个数分别为:7,10,6,7,10,
∴==8;
(3)由折线统计图可得,
乙的波动大,甲的波动小,故S乙2>S甲2,
∴甲同学的投篮成绩更加稳定;
(4)推荐甲同学参加学校的投篮比赛,
理由:由统计图可知,甲同学5次试投进球的个数分别为:8,7,8,9,8,
乙同学5次试投进球的个数分别为:7,10,6,7,10,
∴甲获奖的机会大,而且S乙2>S甲2,甲同学的投篮成绩更加稳定,
∴推荐甲同学参加学校的投篮比赛.
【点评】本题考查折线统计图、平均数、中位数、众数和方差,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
一十四.统计图的选择(共2小题)
20.(2021•盘锦)空气是由多种气体混合组成的,为了直观地介绍空气各成分的百分比,最适合使用的统计图是( )
A.条形图 B.扇形图 C.折线图 D.直方图
【分析】条形统计图能清楚地表示出每个项目中的具体数目,易于比较数据之间的差别;用扇形的面积表示部分在总体中所占的百分比,易于显示每组数据相对于总数的大小;折线统计图能清楚地反映事物的变化情况,显示数据变化趋势;直方图在数量表示上比较确切,但不够直观、形象,不利于分析数据分布的总体态势.
【解答】解:条形统计图能清楚地表示出每个项目中的具体数目,易于比较数据之间的差别,故A选项不符合题意;
扇形统计图中用扇形的面积表示部分在总体中所占的百分比,易于显示每组数据相对于总数的大小,故B选项符合题意;
折线统计图能清楚地反映事物的变化情况,显示数据变化趋势,故C选项不符合题意;
直方图在数量表示上比较确切,但不够直观、形象,不利于分析数据分布的总体态势,故D选项不符合题意.
故选:B.
【点评】本题考查统计图的选择及频数(率)分布直方图,应充分掌握各种统计图(条形统计图、扇形统计图及折线统计图)的优缺点以及频数(率)分布直方图中各量的意义.
21.(2019•泰州)PM2.5是指空气中直径小于或等于2.5μm的颗粒物,它对人体健康和大气环境造成不良影响,下表是根据《全国城市空气质量报告》中的部分数据制作的统计表,根据统计表回答下列问题.
2017年、2018年7~12 月全国338个地级及以上市PM2.5平均浓度统计表(单位:μg/m3)
月份
年份
7
8
9
10
11
12
2017年
27
24
30
38
51
65
2018年
23
24
25
36
49
53
(1)2018年7~12月PM2.5平均浓度的中位数为 30.5 ;
(2)“扇形统计图”和“折线统计图”中,更能直观地反映2018年7~12月PM2.5平均浓度变化过程和趋势的统计图是 折线统计图 ;
(3)某同学观察统计表后说:“2018年7~12月与2017年同期相比,空气质量有所改善”,请用一句话说明该同学得出这个结论的理由.
【分析】(1)根据中位数的计算公式进行计算即可;
(2)根据统计图的特点即可得出答案;
(3)从统计表看,2018年7~12月每月的PM2.5平均浓度都比2017年同期每月的PM2.5平均浓度小,据此可得出结论.
【解答】解:(1)2018年7~12月PM2.5平均浓度的中位数为:(25+36)÷2=30.5;
故答案为:30.5;
(2)根据统计图的特点可得:更能直观地反映2018年7~12月PM2.5平均浓度变化过程和趋势的统计图是折线统计图;
故答案为:折线统计图;
(3)2018年7~12月与2017年同期相比,空气质量有所改善,理由如下:
2018年7~12月每月的PM2.5平均浓度都比2017年同期每月的PM2.5平均浓度小.
【点评】此题考查了统计图的选择,中位数,熟练掌握统计图的特点和中位数的计算方法是解题的关键.
一十五.其他统计图(共1小题)
22.(2020•陕西)如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是( )
A.4℃ B.8℃ C.12℃ D.16℃
【分析】根据A市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.
【解答】解:从图中可以看出,这一天中最高气温是8℃,最低气温是﹣4℃,
∴这一天中最高气温与最低气温的差为8﹣(﹣4)=12(℃),
故选:C.
【点评】本题考查了统计图,从图中得到必要的信息是解决问题的关键.
一十六.算术平均数(共2小题)
23.(2021•湘潭)某中学积极响应党的号召,大力开展各项有益于德智体美劳全面发展的活动.小明同学在某学期德智体美劳的评价得分如图所示,则小明同学五项评价的平均得分为( )
A.7分 B.8分 C.9分 D.10分
【分析】根据算术平均数的定义求解即可.
【解答】解:小明同学五项评价的平均得分为=9(分),
故选:C.
【点评】本题主要考查算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.
24.(2021•大庆)某校要从甲,乙两名学生中挑选一名学生参加数学竞赛,在最近的8次选拔赛中,他们的成绩(成绩均为整数,单位:分)如下:
甲:92,95,96,88,92,98,99,100
乙:100,87,92,93,9■,95,97,98
由于保存不当,学生乙有一次成绩的个位数字模糊不清,
(1)求甲成绩的平均数和中位数;
(2)求事件“甲成绩的平均数大于乙成绩的平均数”的概率;
(3)当甲成绩的平均数与乙成绩的平均数相等时,请用方差大小说明应选哪个学生参加数学竞赛.
【分析】(1)根据平均数和中位数的意义求解即可;
(2)根据甲、乙的平均数,确定模糊不清的数所有可能的情况,从中找出“甲成绩的平均数大于乙成绩的平均数”的情况,进而求出概率;
(3)计算出甲、乙的方差即可.
【解答】解:(1)甲成绩的平均数为:(88+92+92+95+96+98+99+100)÷8=95,
将甲成绩从小到大排列处在中间位置的两个数的平均数为=95.5,因此中位数是95.5,
答:甲成绩的平均数为95,中位数是95.5;
(2)设模糊不清的数的个位数字为a,则a为0至9的整数,也就是模糊不清的数共10种可能的结果,
当甲成绩的平均数大于乙成绩的平均数时,有95>,
即95>,
解得a<8,共有8种不同的结果,
所以“甲成绩的平均数大于乙成绩的平均数”的概率为=;
(3)当甲成绩的平均数与乙成绩的平均数相等时,
即=95,
解得a=8,
所以甲的方差为:=[(88﹣95)2+(92﹣95)2×2+(96﹣95)2+(98﹣95)2+(99﹣95)2+(100﹣95)2]=14.75,
乙的方差为:=[(87﹣95)2+(92﹣95)2+(93﹣95)2+(97﹣95)2+(98﹣95)2×2+(100﹣95)2]=15.5,
∵<,
∴甲的成绩更稳定,
所以应选择甲同学参加数学竞赛.
【点评】本题考查中位数、平均数、方差以及列表法或树状图法求简单随机事件发生的概率,理解中位数、平均数、方差的意义,掌握中位数、平均数、方差的计算方法是正确解答的前提,列举出所有可能出现的结果情况是求概率的关键.
一十七.加权平均数(共2小题)
25.(2021•抚顺)某校举行学生会成员的竞选活动,对竞选者从民主测评和演讲两个方面进行考核,两项成绩均按百分制计,规定民主测评的成绩占40%,演讲的成绩占60%,小新同学的民主测评和演讲的成绩分别为80分和90分,则他的最终成绩是( )
A.83分 B.84分 C.85分 D.86分
【分析】根据加权平均数的定义列式计算即可.
【解答】解:他的最终成绩为80×40%+90×60%=86(分),
故选:D.
【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.
26.(2020•镇江)教育部发布的义务教育质量监测结果报告显示,我国八年级学生平均每天的睡眠时间达9小时及以上的比例为19.4%.某校数学社团成员采用简单随机抽样的方法,抽取了本校八年级50名学生,对他们一周内平均每天的睡眠时间t(单位:小时)进行了调查,将数据整理后绘制成下表:
平均每天的睡眠时间分组
5≤t<6
6≤t<7
7≤t<8
8≤t<9
9小时及以上
频数
1
5
m
24
n
该样本中学生平均每天的睡眠时间达9小时及以上的比例高于全国的这项数据,达到了22%.
(1)求表格中n的值;
(2)该校八年级共400名学生,估计其中平均每天的睡眠时间在7≤t<8这个范围内的人数是多少.
【分析】(1)根据频率=求解可得;
(2)先根据频数的和是50及n的值求出m的值,再用总人数乘以样本中平均每天的睡眠时间在7≤t<8这个范围内的人数所占比例即可得.
【解答】解:(1)n=50×22%=11;
(2)m=50﹣1﹣5﹣24﹣11=9,
所以估计该校平均每天的睡眠时间在7≤t<8这个范围内的人数是400×=72(人).
【点评】本题主要考查加权平均数、样本估计总体及频数(率)分布表,解题的关键是掌握频率=、频数的和是50.
一十八.计算器-平均数(共1小题)
27.(2008•巴中)用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17的平均数约为( )
A.14.15 B.14.16 C.14.17 D.14.20
【分析】本题要求同学们,熟练应用计算器.
【解答】解:借助计算器,先按MOOE按2再按1,会出现一竖,然后把你要求平均数的数字输进去,好了之后按AC键,再按shift再按1,然后按5,就会出现平均数的数值.
故选:B.
【点评】本题要求同学们能熟练应用计算器,会用科学计算器进行计算.
一十九.中位数(共2小题)
28.(2021•朝阳)某校开展了以“爱我家乡”为主题的艺术活动,从九年级5个班收集到的艺术作品数量(单位:件)分别为48,50,47,44,50,则这组数据的中位数是( )
A.44 B.47 C.48 D.50
【分析】根据中位数的意义,排序后处在中间位置的数即可.
【解答】解:将这五个数据从小到大排列后处在第3位的数是48,因此中位数是48;
故选:C.
【点评】本题考查中位数的意义,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数是中位数.
29.(2021•梧州)某校为提高学生的安全意识,开展了安全知识竞赛,这次竞赛成绩满分为10分.现从该校七年级中随机抽取10名学生的竞赛成绩,这10名学生的竞赛成绩是:10,9,9,8,10,8,10,9,7,10.
(1)求这10名学生竞赛成绩的中位数和平均数;
(2)该校七年级共400名学生参加了此次竞赛活动,根据上述10名学生竞赛成绩情况估计参加此次竞赛活动成绩为满分的学生人数是多少?
【分析】(1)依据中位数和平均数的计算方法即可求解;
(2)样本估计总体,400乘以10名学生竞赛成绩为满分的学生人数所占比例即可.
【解答】解:(1)这10名学生竞赛成绩从小到大排列为:7,8,8,9,9,9,10,10,10,10,
中位数为:=9,
平均数=(7+8×2+9×3+10×4)=9;
(2)400×=160(人),
答:估计参加此次竞赛活动成绩为满分的学生人数是160人.
【点评】本题主要考查中位数和平均数及样本估计总体,解题的关键是掌握中位数和平均数的定义、样本估计总体思想的运用.样本估计总体是统计中常用的方法.
二十.众数(共2小题)
30.(2021•攀枝花)疫情期间,某商店连续7天销售口罩的盒数分别为10,12,14,13,12,12,11.关于这组数据,以下结论错误的是( )
A.众数是12 B.平均数是12 C.中位数是12 D.方差是
【分析】根据众数、平均数、中位数及方差的定义分别对每一项进行分析,即可得出答案.
【解答】解:A、12出现了3次,出现的次数最多,则这组数据的众数是12,故本选项正确,不符合题意;
B、这组数据的平均数:=12,故本选项正确,不符合题意;
C、把这些数从小到大排列为:10,11,12,12,12,13,14,中位数是12,故本选项正确,不符合题意;
D、方差是:×[(10﹣12)2+(11﹣12)2+3×(12﹣12)2+(13﹣12)2+(14﹣12)2]=,故本选项错误,符合题意;
故选:D.
【点评】本题主要考查方差、众数、平均数、中位数,解题的关键是掌握众数、平均数、中位数、方差的定义.
31.(2021•广州)某中学为了解初三学生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:
3,5,3,6,3,4,4,5,2,4,5,6,1,3,5,5,4,4,2,4
根据以上数据,得到如下不完整的频数分布表:
次数
1
2
3
4
5
6
人数
1
2
a
6
b
2
(1)表格中的a= 4 ,b= 5 ;
(2)在这次调查中,参加志愿者活动的次数的众数为 4 ,中位数为 4 ;
(3)若该校初三年级共有300名学生,根据调查统计结果,估计该校初三年级学生参加志愿者活动的次数为4次的人数.
【分析】(1)由题中的数据即可求解;
(2)根据中位数、众数的定义,即可解答;
(3)根据样本估计总体,即可解答.
【解答】解:(1)由该20名学生参加志愿者活动的次数得:a=4,b=5,
故答案为:4,5;
(2)该20名学生参加志愿者活动的次数从小到大排列如下:
1,2,2,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,6,6,
∵4出现的最多,有6次,
∴众数为4,中位数为第10,第11个数的平均数=4,
故答案为:4,4;
(3)300×=90(人).
答:估计该校初三年级学生参加志愿者活动的次数为4次的人数有90人.
【点评】此题考查了频数分布表,众数、中位数,样本估计总体,掌握众数、中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数.
二十一.极差(共1小题)
32.(2020•巴中)某地区一周内每天的平均气温如下:25℃,27.3℃,21℃,21.4℃,28℃,33.6℃,30℃.这组数据的极差为( )℃
A.8.6 B.9 C.12.2 D.12.6
【分析】根据极差的公式:极差=最大值﹣最小值.找出所求数据中最大的值33.6,最小值21.4,再代入公式求值.
【解答】解:由题意可知,数据中最大的值33.6,最小值21,
所以极差为33.6﹣21=12.6.
故选:D.
【点评】本题考查极差的定义,属于基础题,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.
二十二.方差(共2小题)
33.(2021•绵阳)某同学连续7天测得体温(单位:℃)分别是36.5、36.3、36.7、36.5、36.7、37.1、37.1,关于这一组数据,下列说法正确的是( )
A.众数是36.3 B.中位数是36.6
C.方差是0.08 D.方差是0.09
【分析】根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出方差.
【解答】解:7个数中36.5、36.7和37.1都出现了二次,次数最多,即众数为36.5、36.7和37.1,故A选项不正确,不符合题意;
将7个数按从小到大的顺序排列为:36.3,36.5,36.5,36.7,36.7,37.1,37.1,则中位数为36.7,故B选项错误,不符合题意;
=×(36.5+36.3+36.5+36.7+36.7+37.1+37.1)=36.7,
S2=[(36.3﹣36.7)2+2×(36.5﹣36.7)2+2×(36.7﹣36.7)2+2×(37.1﹣36.7)2]=0.08,故C选项正确,符合题意,故D选项错误,不符合题意;
故选:C.
【点评】本题考查的是众数、平均数、方差、中位数,掌握它们的概念和计算公式是解题的关键.
34.(2021•南通)某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两种西瓜各7份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.
甲、乙两种西瓜得分表
序号
1
2
3
4
5
6
7
甲种西瓜(分)
75
85
86
88
90
96
96
乙种西瓜(分)
80
83
87
90
90
92
94
甲、乙两种西瓜得分统计表
平均数
中位数
众数
甲种西瓜
88
a
96
乙种西瓜
88
90
b
(1)a= 88 ,b= 90 ;
(2)从方差的角度看, 乙 种西瓜的得分较稳定(填“甲”或“乙”);
(3)小明认为甲种西瓜的品质较好些,小军认为乙种西瓜的品质较好些.请结合统计图表中的信息分别写出他们的理由.
【分析】(1)根据中位数、众数的意义求解即可;
(2)根据数据大小波动情况,直观可得答案;
(3)从中位数、众数的比较得出答案.
【解答】解:(1)将甲种西瓜的得分从小到大排列,处在中间位置的一个数是88,因此中位数是88,即a=88,
乙种西瓜的得分出现次数最多的是90分,所以众数是90,即b=90,
故答案为:88,90;
(2)由甲、乙两种西瓜得分的大小波动情况,直观可得s甲2>s乙2,
∴乙种西瓜的得分较稳定,
故答案为:乙;
(3)甲种西瓜的品质较好些,理由为:甲种西瓜得分的众数比乙种的高.
乙种西瓜的品质较好些,理由为:乙种西瓜得分的中位数比甲种的高.
【点评】本题考查频数分布表,中位数、众数、方差,理解中位数、众数、方差的意义和计算方法是正确解答的前提.
二十三.标准差(共1小题)
35.(2019•杭州)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是( )
A.平均数 B.中位数 C.方差 D.标准差
【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.
【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.
故选:B.
【点评】本题考查了标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.也考查了中位数、平均数.
二十四.计算器-标准差与方差(共1小题)
36.(2015•淄博)在学校组织的社会实践活动中,甲、乙两人参加了射击比赛,每人射击七次,命中的环数如表:
序号
一
二
三
四
五
六
七
甲命中的环数(环)
7
8
8
6
9
8
10
乙命中的环数(环)
5
10
6
7
8
10
10
根据以上信息,解决以下问题:
(1)写出甲、乙两人命中环数的众数;
(2)已知通过计算器求得=8,s甲2≈1.43,试比较甲、乙两人谁的成绩更稳定?
【分析】(1)根据众数的定义解答即可;
(2)根据已知条件中的数据计算出乙的方差和平均数,再和甲比较即可.
【解答】解:(1)由题意可知:甲的众数为8,乙的众数为10;
(2)乙的平均数==8,
乙的方差为:S乙2=[(5﹣8)2+(10﹣8)2+…+(10﹣8)2]=≈3.71.
∵得=8,s甲2≈1.43,
∴甲乙的平均成绩一样,而甲的方差小于乙的方差,
∴甲的成绩更稳定.
【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
二十五.统计量的选择(共2小题)
37.(2021•德州)八年级二班在一次体重测量中,小明体重54.5kg,低于全班半数学生的体重,分析得到结论所用的统计量是( )
A.中位数 B.众数 C.平均数 D.方差
【分析】根据中位数的意义求解可得.
【解答】解:八年级二班在一次体重排列后,最中间一个数或最中间两个体重数的平均数是这组体重数的中位数,
半数学生的体重位于中位数或中位数以下,
小明低于全班半数学生的体重所用的统计量是中位数,
故选:A.
【点评】本题主要考查统计量的选择,解题的关键是掌握中位数、众数、平均数及方差的定义和意义.
38.(2021•广西)某水果公司以10元/kg的成本价新进2000箱荔枝,每箱质量5kg,在出售荔枝前,需要去掉损坏的荔枝,现随机抽取20箱,去掉损坏荔枝后称得每箱的质量(单位:kg)如下:
4.7 4.8 4.6 4.5 4.8 4.9 4.8 4.7 4.8 4.7
4.8 4.9 4.7 4.8 4.5 4.7 4.7 4.9 4.7 5.0
整理数据:
质量(kg)
4.5
4.6
4.7
4.8
4.9
5.0
数量(箱)
2
1
7
a
3
1
分析数据:
平均数
众数
中位数
4.75
b
c
(1)直接写出上述表格中a,b,c的值.
(2)平均数、众数、中位数都能反映这组数据的集中趋势,请根据以上样本数据分析的结果,任意选择其中一个统计量,估算这2000箱荔枝共损坏了多少千克?
(3)根据(2)中的结果,求该公司销售这批荔枝每千克定为多少元才不亏本(结果保留一位小数)?
【分析】(1)根据题意以及众数、中位数的定义分别求出即可;
(2)从平均数、中位数、众数中,任选一个计算即可;
(3)求出成本,根据(2)的结果计算即可得到答案.
【解答】解:(1)a=20﹣2﹣1﹣7﹣3﹣1=6,
分析数据:样本中,4.7出现的次数最多;故众数b为4.7,
将数据从小到大排列,找最中间的两个数为4.7,4.8,故中位数c==4.75,
∴a=6,b=4.7,c=4.75;
(2)选择众数4.7,
这2000箱荔枝共损坏了2000×(5﹣4.7)=600(千克)(答案不唯一);
(3)10×2000×5÷(2000×5﹣600)≈10.7(元),
答:该公司销售这批荔枝每千克定为10.7元才不亏本.
【点评】本题考查的是平均数、众数和中位数的定义及运用.要学会根据统计量的意义分析解决问题.
二十六.随机事件(共1小题)
39.(2021•沈阳)下列说法正确的是( )
A.任意掷一枚质地均匀的骰子,掷出的点数一定是奇数
B.“从一副扑克牌中任意抽取一张,抽到大王”是必然事件
C.了解一批冰箱的使用寿命,采用抽样调查的方式
D.若平均数相同的甲、乙两组数据,s甲2=0.3,s乙2=0.02,则甲组数据更稳定
【分析】依据随机事件、抽样调查以及方差的概念进行判断,即可得出结论.
【解答】解:A.任意掷一枚质地均匀的骰子,掷出的点数不一定是奇数,故原说法错误,不合题意;
B.“从一副扑克牌中任意抽取一张,抽到大王”是随机事件,故原说法错误,不合题意;
C.了解一批冰箱的使用寿命,适合采用抽样调查的方式,说法正确,符合题意;
D.若平均数相同的甲、乙两组数据,s甲2=0.3,s乙2=0.02,则乙组数据更稳定,故原说法错误,不合题意;
故选:C.
【点评】本题主要考查了随机事件、抽样调查以及方差的概念,方差是反映一组数据的波动大小的一个量.方差越大,则各数据与平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
二十七.可能性的大小(共1小题)
40.(2020•安顺)下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是( )
A. B.
C. D.
【分析】各选项袋子中分别共有10个小球,若要使摸到红球可能性最大,只需找到红球的个数最多的袋子即可得出答案.
【解答】解:在四个选项中,D选项袋子中红球的个数最多,
所以从D选项袋子中任意摸出一个球,摸到红球可能性最大,
故选:D.
【点评】本题主要考查可能性的大小,解题的关键是掌握随机事件发生的可能性(概率)的计算方法.
二十八.概率的意义(共1小题)
41.(2021•郴州)下列说法正确的是( )
A.“明天下雨的概率为80%”,意味着明天有80%的时间下雨
B.经过有信号灯的十字路口时,可能遇到红灯,也可能遇到绿灯
C.“某彩票中奖概率是1%”,表示买100张这种彩票一定会有1张中奖
D.小明前几次的数学测试成绩都在90分以上这次数学测试成绩也一定在90分以上
【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.
【解答】解:A.明天下雨的概率为80%,只是说明明天下雨的可能性大,与时间无关,故本选项不符合题意;
B.经过有信号灯的十字路口时,可能遇到红灯,也可能遇到绿灯,故本选项符合题意;
C.某彩票中奖概率是1%,买100张这种彩票中奖是随机事件,不一定会有1张中奖,故本选项不符合题意;
D.小明前几次的数学测试成绩都在90分以上这次数学测试成绩不一定在90分以上,故本选项不符合题意.
故选:B.
【点评】本题考查概率的意义,解题的关键是正确理解概率的意义,本题属于基础题型.
二十九.概率公式(共2小题)
42.(2021•兰州)如图,将一个棱长为3的正方体表面涂上颜色,再把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的概率为( )
A. B. C. D.
【分析】直接根据题意得出恰有三个面被涂色的有8个,再利用概率公式求出答案.
【解答】解:由题意可得:小立方体一共有27个,恰有三个面被涂色.的有8个,
故取得的小正方体恰有三个面被涂色.的概率为.
故选:B.
【点评】此题主要考查了概率公式的应用,正确得出三个面被涂色.小立方体的个数是解题关键.
43.(2021•锦州)为庆祝建党100周年,某校开展“唱爱国歌曲,扬红船精神”大合唱活动.规律是:将编号为A,B,C的3张卡片(如图所示,卡片除编号和内容外,其他完全相同)背面朝上洗匀后放在桌面上,参加活动的班级从中随机抽取1张,按照卡片上的曲目演唱.
(1)七年一班从3张卡片中随机抽取1张,抽到C卡片的概率为 ;
(2)七年一班从3张卡片中随机抽取1张,记下曲目后放回洗匀,七年二班再从中随机抽取1张,请用列表或画树状图的方法,求这两个班级恰好抽到同一首歌曲的概率.
【分析】(1)直接利用概率公式求解即可;
(2)根据题意先画树状图列出所有等可能结果数的,根据概率公式求解可得.
【解答】解:(1)小明随机抽取1张卡片,抽到卡片编号为C的概率为,
故答案为:;
(2)画树状图如下:
共有9种等可能的结果数,其中两个班级恰好选择一首歌曲的有3种结果,
所以两个班级恰好抽到同一首歌曲的概率为=.
【点评】本题考查的是用列表法或画树状图法求概率与古典概率的求解方法.列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
三十.几何概率(共1小题)
44.(2021•常州)以下转盘分别被分成2个、4个、5个、6个面积相等的扇形,任意转动这4个转盘各1次.已知某转盘停止转动时,指针落在阴影区域的概率是,则对应的转盘是( )
A. B. C. D.
【分析】首先确定在图中阴影区域的面积在整个面积中占的比例,根据这个比例即可求出指针指向阴影区域的概率.
【解答】解:A.∵圆被等分成2份,其中阴影部分占1份,
∴落在阴影区域的概率为:,故此选项不合题意;
B.∵圆被等分成4份,其中阴影部分占1份,
∴落在阴影区域的概率为:,故此选项不合题意;
C.∵圆被等分成5份,其中阴影部分占2份,
∴落在阴影区域的概率为:,故此选项不合题意;
D.∵圆被等分成6份,其中阴影部分占2份,
∴落在阴影区域的概率为:=,故此选项符合题意;
故选:D.
【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.
三十一.列表法与树状图法(共2小题)
45.(2021•济南)某学校组织学生到社区开展公益宣传活动,成立了“垃圾分类”“文明出行”“低碳环保”三个宣传队,如果小华和小丽每人随机选择参加其中一个宣传队,则她们恰好选到同一个宣传队的概率是( )
A. B. C. D.
【分析】画树状图,共有9种等可能的结果,小华和小丽恰好选到同一个宣传队的结果有3种,再由概率公式求解即可.
【解答】解:把“垃圾分类”“文明出行”“低碳环保”三个宣传队分别记为A、B、C,
画树状图如下:
共有9种等可能的结果,小华和小丽恰好选到同一个宣传队的结果有3种,
∴小华和小丽恰好选到同一个宣传队的概率为=,
故选:C.
【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.正确画出树状图是解题的关键.
46.(2021•宁夏)2021年,“碳中和、碳达峰”成为高频热词.为了解学生对“碳中和、碳达峰”知识的知晓情况,某校团委随机对该校九年级部分学生进行了问卷调查,调查结果共分成四个类别:A表示“从未听说过”,B表示“不太了解”,C表示“比较了解”,D表示“非常了解”.根据调查统计结果,绘制成两种不完整的统计图.请结合统计图,回答下列问题.
(1)参加这次调查的学生总人数为 40 人;
(2)扇形统计图中,B部分扇形所对应的圆心角是 108° ;
(3)将条形统计图补充完整;
(4)在D类的学生中,有2名男生和2名女生,现需从这4名学生中随机抽取2名“碳中和、碳达峰”知识的义务宣讲员,请利用画树状图或列表的方法,求所抽取的2名学生恰好是1名男生和1名女生的概率.
【分析】(1)根据A类别人数及其所占百分比可得被调查的总人数;
(2)用360°乘以B类别人数所占比例即可;
(3)根据四种类别人数人数之和等于总人数求出C类别人数即可补全图形;
(4)画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.
【解答】解:(1)参加这次调查的学生总人数为6÷15%=40(人),
故答案为:40;
(2)扇形统计图中,B部分扇形所对应的圆心角是360°×=108°,
故答案为:108°;
(3)C类别人数为40﹣(6+12+4)=18(人),
补全图形如下:
(4)画树状图为:
共有12种等可能的结果数,其中恰好选中1名男生和1名女生的结果数为8,
∴所抽取的2名学生恰好是1名男生和1名女生的概率=.
【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图
三十二.游戏公平性(共1小题)
47.(2021•青岛)为践行青岛市中小学生“十个一”行动,某校举行文艺表演,小静和小丽想合唱一首歌.小静想唱《红旗飘飘》,而小丽想唱《大海啊,故乡》.她们想通过做游戏的方式来决定合唱哪一首歌,于是一起设计了一个游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,同时转动两个转盘,若两个指针指向的数字之积小于4,则合唱《大海啊,故乡》,否则合唱《红旗飘飘》;若指针刚好落在分割线上,则需要重新转动转盘,请用列表或画树状图的方法说明这个游戏是否公平.
【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与数字之积小于4的情况,再利用概率公式求出合唱《大海啊,故乡》和合唱《红旗飘飘》的概率,然后进行比较,即可得出答案.
【解答】解:根据题意画树状图如下:
∵共有12种等可能的结果,其中数字之积小于4的有5种结果,
∴合唱《大海啊,故乡》的概率是,
∴合唱《红旗飘飘》的概率是,
∵<,
∴游戏不公平.
【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.
三十三.利用频率估计概率(共2小题)
48.(2021•呼和浩特)动物学家通过大量的调查,估计某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,据此若设刚出生的这种动物共有a只,则20年后存活的有 0.8a 只,现年20岁的这种动物活到25岁的概率是 .
【分析】用概率乘以动物的总只数即可得出20年后存活的数量;先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公式解答即可.
【解答】解:若设刚出生的这种动物共有a只,则20年后存活的有0.8a只,活到25岁的只数为0.5a,
故现年20岁到这种动物活到25岁的概率为=,
故答案为:0.8a,.
【点评】此题主要考查了概率,用到的知识点为:概率=所求情况数与总情况数之比.
49.(2021•盐城)圆周率π是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对π有过深入的研究.目前,超级计算机已计算出π的小数部分超过31.4万亿位.有学者发现,随着π小数部分位数的增加,0~9这10个数字出现的频率趋于稳定接近相同.
(1)从π的小数部分随机取出一个数字,估计数字是6的概率为 ;
(2)某校进行校园文化建设,拟从以上4位科学家的画像中随机选用2幅,求其中有一幅是祖冲之的概率.(用画树状图或列表方法求解)
【分析】(1)由题意得出从π的小数部分随机取出一个数字共有10种等可能结果,其中出现数字6的只有1种结果,利用概率公式求解即可;
(2)将祖冲之、刘徽、韦达、欧拉四位数学家分别记作甲、乙、丙、丁,列表得出所有等可能结果及符合条件的结果数,根据概率公式求解即可.
【解答】解:(1)∵随着π小数部分位数的增加,0~9这10个数字出现的频率趋于稳定,
∴从π的小数部分随机取出一个数字共有10种等可能结果,其中出现数字6的只有1种结果,
∴从π的小数部分随机取出一个数字,估计是数字6的概率为,
故答案为:;
(2)将祖冲之、刘徽、韦达、欧拉四位数学家分别记作甲、乙、丙、丁,列表如下:
甲
乙
丙
丁
甲
一
(乙,甲)
(丙,甲)
(丁,甲)
乙
(甲,乙)
一
(丙,乙)
(丁,乙)
丙
(甲,丙)
(乙,丙)
一
(丁,丙)
丁
(甲,丁)
(乙,丁)
(丙,丁)
一
∵共有12种等可能的情况,其中有一幅是祖冲之的有6种结果,
∴其中有一幅是祖冲之的概率为=.
【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.
三十四.模拟实验(共1小题)
50.(2021•宜昌)社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里装有几十个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象如图所示,经分析可以推断盒子里个数比较多的是 白球 .(填“黑球”或“白球”)
【分析】根据频率估计概率得出摸到黑球的近似概率,再得出摸到白球的概率,即可推断出是白球多还是黑球多.
【解答】解:由图可知,摸出黑球的概率约为0.2,
∴摸出白球的概率约为0.8,
∴白球的个数比较多,
故答案为白球.
【点评】本题主要考查用频率估计概率,需要注意的是试验次数要足够大,次数太少时不能估计概率.
2022年中考数学考前30天迅速提分专题02 数与式(含答案): 这是一份2022年中考数学考前30天迅速提分专题02 数与式(含答案),共53页。试卷主要包含了2数与式,2×10﹣2,精确度正确的是,01D.精确到0等内容,欢迎下载使用。
2022年中考数学考前30天迅速提分专题03 方程与不等式(含答案): 这是一份2022年中考数学考前30天迅速提分专题03 方程与不等式(含答案),共64页。试卷主要包含了3方程与不等式,5<x<20,2652=6,6﹣1,75,04,31,21等内容,欢迎下载使用。
2022年中考数学考前30天迅速提分专题14 旋转的两种模型与真题训练(含答案): 这是一份2022年中考数学考前30天迅速提分专题14 旋转的两种模型与真题训练(含答案),共37页。试卷主要包含了5旋转的两种模型与真题训练,7,10等内容,欢迎下载使用。