开学活动
搜索
    上传资料 赚现金

    2022年中考数学考前30天迅速提分专题14 旋转的两种模型与真题训练(含答案)

    2022年中考数学考前30天迅速提分专题14  旋转的两种模型与真题训练(含答案)第1页
    2022年中考数学考前30天迅速提分专题14  旋转的两种模型与真题训练(含答案)第2页
    2022年中考数学考前30天迅速提分专题14  旋转的两种模型与真题训练(含答案)第3页
    还剩34页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年中考数学考前30天迅速提分专题14 旋转的两种模型与真题训练(含答案)

    展开

    这是一份2022年中考数学考前30天迅速提分专题14 旋转的两种模型与真题训练(含答案),共37页。试卷主要包含了5旋转的两种模型与真题训练,7,10等内容,欢迎下载使用。
    2022年中考数学考前30天迅速提分复习方案(全国通用)
    专题2.5旋转的两种模型与真题训练

    题型一:奔驰模型
    一.填空题(共2小题)
    1.(2021•岳阳模拟)如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论中正确有   (填序号)
    ①△BPQ是等边三角形 ②△PCQ是直角三角形 ③∠APB=150° ④∠APC=135°

    2.(2020•滨州模拟)如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,若将△APB绕着点B逆时针旋转后得到△CQB,则∠APB的度数   .

    二.解答题(共1小题)
    3.(2019•碑林区校级三模)问题提出
    (1)如图,点M、N是直线l外两点,在直线l上找一点K,使得MK+NK最小.
    问题探究
    (2)在等边三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB度数的大小.
    问题解决
    (3)如图,矩形ABCD是某公园的平面图,AB=30米,BC=60米,现需要在对角线BD上修一凉亭E,使得到公园出口A、B,C的距离之和最小.问:是否存在这样的点E?
    若存在,请画出点E的位置,并求出EA+EB+EC的和的最小值;若不存在,请说明理由.







    题型二:费马点模型
    一.填空题(共2小题)
    1.(2020•碑林区校级模拟)如图,在边长为6的正方形ABCD中,点M,N分别为AB、BC上的动点,且始终保持BM=CN.连接MN,以MN为斜边在矩形内作等腰Rt△MNQ,若在正方形内还存在一点P,则点P到点A、点D、点Q的距离之和的最小值为   .

    2.(2020•崇州市模拟)如果点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点.已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为的等腰直角三角形DEF的费马点,则PD+PE+PF=   .

    二.解答题(共5小题)
    3.(2021•雁塔区校级模拟)【问题情境】
    如图1,在△ABC中,∠A=120°,AB=AC,BC=5,则△ABC的外接圆的半径值为    .
    【问题解决】
    如图2,点P为正方形ABCD内一点,且∠BPC=90°,若AB=4,求AP的最小值.
    【问题解决】
    如图3,正方形ABCD是一个边长为3cm的隔离区域设计图,CE为大门,点E在边BC上,CE=cm,点P是正方形ABCD内设立的一个活动岗哨,到B、E的张角为120°,即∠BPE=120°,点A、D为另两个固定岗哨.现需在隔离区域内部设置一个补水供给点Q,使得Q到A、D、P三个岗哨的距离和最小,试求QA+QD+QP的最小值.(保留根号或结果精确到1cm,参考数据≈1.7,10.52=110.25).

















    4.(2021•山西模拟)阅读下列材料,完成后面相应的任务:

    费马(Ferrmat,1601年8月17日﹣1665年1月12日),生于法国南部图卢兹(Toulouse)附近的波蒙•德•罗曼,被誉为业余数学家之王.1643年,费马曾提出了一个著名的几何问题:给定不在一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置.另一位数学家托里拆利成功地解决了这个问题:如图1,△ABC(三个内角均小于120°)的三条边的张角都等于120°,即满足∠APB=∠BPC=∠APC=120°的点P,就是到点A,B,C的距离之和最小的点,后来人们把这个点P称为“费马点”.
    下面是“费马点”的证明过程:如图2,将△APB绕着点B逆时针旋转60°得到△A′P′B,使得A′P′落在△ABC外,则△A′AB为等边三角形,∴P′B=PB=PP′,于是PA+PB+PC=P′A′+PP′+PC≥A′C,….
    任务:(1)材料中,判定△A′AB为等边三角形的依据是    .
    (2)请你完成剩余的部分.
    (3)如图,△ABC为锐角三角形,以AC为一边作等边△ACD,⊙O是△ACD的外接圆,连接BD交⊙O于点M,求证:M是△ABC的费马点.





    5.(2018•禹会区一模)如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.
    (1)如果点P为锐角△ABC的费马点,且∠ABC=60°.
    ①求证:△ABP∽△BCP;
    ②若PA=3,PC=4,则PB=   .
    (2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD相交于P点.如图(2)
    ①求∠CPD的度数;
    ②求证:P点为△ABC的费马点.




















    6.(2018•温岭市模拟)(1)知识储备
    ①如图1,已知点P为等边△ABC外接圆的BC上任意一点.求证:PB+PC=PA.
    ②定义:在△ABC所在平面上存在一点P,使它到三角形三顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离.
    (2)知识迁移
    ①我们有如下探寻△ABC(其中∠A,∠B,∠C均小于120°)的费马点和费马距离的方法:
    如图2,在△ABC的外部以BC为边长作等边△BCD及其外接圆,根据(1)的结论,易知线段    的长度即为△ABC的费马距离.
    ②在图3中,用不同于图2的方法作出△ABC的费马点P(要求尺规作图).
    (3)知识应用
    ①判断题(正确的打√,错误的打×):
    ⅰ.任意三角形的费马点有且只有一个    ;
    ⅱ.任意三角形的费马点一定在三角形的内部    .
    ②已知正方形ABCD,P是正方形内部一点,且PA+PB+PC的最小值为,求正方形ABCD的
    边长.












    7.(2018•山西模拟)皮埃尔•德•费马,17世纪法国律师和业余数学家,被誉为“业余数学家之王”.1638年勒•笛卡儿邀请费马思考关于三个顶点距离为定值的函数问题,费马经过思考并由此提出费马点的相关结论.
    定义:若一个三角形的最大内角小于120°,则在其内部有一点,可使该点所对三角形三边的张角均为120°,此时该点叫做这个三角形的费马点.例如,如图1,点P是△ABC的费马点.
    请结合阅读材料,解决下列问题:
    已知:如图2,锐角△DEF.
    (1)尺规作图,并标明字母.
    ①在△DEF外,以DF为一边作等边△DFG.
    ②作△DFG的外接圆⊙O.
    ③连接EG交⊙O于点M.
    (2)求证:(1)中的点M是△DEF的费马点.



    【真题训练】
    一.填空题(共2小题)
    1.(2021•丹东)已知:到三角形3个顶点距离之和最小的点称为该三角形的费马点.如果△ABC是锐角(或直角)三角形,则其费马点P是三角形内一点,且满足∠APB=∠BPC=∠CPA=120°.(例如:等边三角形的费马点是其三条高的交点).若AB=AC=,BC=2,P为△ABC的费马点,则PA+PB+PC=   ;若AB=2,BC=2,AC=4,P为△ABC的费马点,则PA+PB+PC=   .
    2.(2016•株洲)已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermatpoint).已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为的等腰直角三角形DEF的费马点,则PD+PE+PF=   .
    二.解答题(共3小题)
    3.(2014•河南)(1)探究发现
    下面是一道例题及其解答过程,请补充完整.
    如图1,在等边三角形ABC内部有一点P,PA=3,PB=4,PC=5.求∠APB的度数.

    解:将△APC绕点A逆时针旋转60°,得到△AP′B,连接PP',则△APP'为等边三角形.
    ∵P′P=PA=3,PB=4,P'B=PC=5,
    ∴P'P2+PB2=P′B2
    △BPP'为   三角形
    ∴∠APB的度数为   .
    (2)类比延伸
    如图2,在正方形ABCD内部有一点P,若∠APD=135°,试判断线段PA、PB、PD之间的数量关系,并说明理由.
    (3)联想拓展
    如图3,在△ABC中,∠BAC=120°,AB=AC.点P在直线AB上方且∠APB=60°,试判断是否存在常数k,满足(kPA)2+PB2=PC2.若存在,求出k的值;若不存在,请说明理由.











    4.(2010•永州)探究问题:
    (1)阅读理解:
    ①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离;
    ②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB•CD+BC•DA=AC•BD.此为托勒密定理;

    (2)知识迁移:
    ①请你利用托勒密定理,解决如下问题:
    如图(C),已知点P为等边△ABC外接圆的上任意一点.求证:PB+PC=PA;
    ②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:
    第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;
    第二步:在上任取一点P′,连接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+   ;
    第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段   的长度即为△ABC的费马距离.

    (3)知识应用:
    2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.
    已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.








    5.(2009•湖州)自选题:若P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.
    (1)若点P为锐角△ABC的费马点,且∠ABC=60°,PA=3,PC=4,则PB的值为    ;
    (2)如图,在锐角△ABC外侧作等边△ACB′连接BB′.求证:BB′过△ABC的费马点P,且BB′=PA+PB+PC.



    2022年中考数学考前30天迅速提分复习方案(全国通用)
    专题2.5旋转的两种模型与真题训练

    题型一:奔驰模型
    一.填空题(共2小题)
    1.(2021•岳阳模拟)如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论中正确有 ①②③ (填序号)
    ①△BPQ是等边三角形 ②△PCQ是直角三角形 ③∠APB=150° ④∠APC=135°

    【分析】根据等边三角形性质得出∠ABC=60°,根据全等得出∠BPA=∠BQC,BP=BQ=4,QC=PA=3,∠ABP=∠QBC,求出∠PBQ=60°,即可判断①,根据勾股定理的逆定理即可判断②;求出∠BQP=60°,∠PQC=90°,即可判断③,求出∠APC+∠QPC=150°和PQ≠QC判断④.
    【解答】解:∵△ABC是等边三角形,
    ∴∠ABC=60°,
    ∵△BQC≌△BPA,
    ∴∠BPA=∠BQC,BP=BQ=4,QC=PA=3,∠ABP=∠QBC,
    ∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°,
    ∴△BPQ是等边三角形,
    ∴PQ=BP=4,
    ∵PQ2+QC2=42+32=25,PC2=52=25,
    ∴PQ2+QC2=PC2,
    ∴∠PQC=90°,即△PQC是直角三角形,
    ∵△BPQ是等边三角形,
    ∴∠BOQ=∠BQP=60°,
    ∴∠BPA=∠BQC=60°+90°=150°,
    ∴∠APC=360°﹣150°﹣60°﹣∠QPC=150°﹣∠QPC,
    ∵∠PQC=90°,PQ≠QC,
    ∴∠QPC≠45°,
    即∠APC≠135°,
    故答案为:①②③.
    【点评】本题考查了等边三角形的性质和判定、勾股定理的逆定理的应用,掌握全等三角形的性质、等边三角形的判定定理、勾股定理的逆定理是解题的关键.
    2.(2020•滨州模拟)如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,若将△APB绕着点B逆时针旋转后得到△CQB,则∠APB的度数 150° .

    【分析】首先证明△BPQ为等边三角形,得∠BQP=60°,由△ABP≌CBQ可得QC=PA,在△PQC中,已知三边,用勾股定理逆定理证出得出∠PQC=90°,可求∠BQC的度数,由此即可解决问题.
    【解答】解:连接PQ,由题意可知△ABP≌△CBQ
    则QB=PB=4,PA=QC=3,∠ABP=∠CBQ,
    ∵△ABC是等边三角形,
    ∴∠ABC=∠ABP+∠PBC=60°,
    ∴∠PBQ=∠CBQ+∠PBC=60°,
    ∴△BPQ为等边三角形,
    ∴PQ=PB=BQ=4,
    又∵PQ=4,PC=5,QC=3,
    ∴PQ2+QC2=PC2,
    ∴∠PQC=90°,
    ∵△BPQ为等边三角形,
    ∴∠BQP=60°,
    ∴∠BQC=∠BQP+∠PQC=150°
    ∴∠APB=∠BQC=150°

    【点评】本题考查旋转的性质、等边三角形的判定和性质、勾股定理的逆定理等知识,解题的关键是勾股定理逆定理的应用,属于中考常考题型.
    二.解答题(共1小题)
    3.(2019•碑林区校级三模)问题提出
    (1)如图,点M、N是直线l外两点,在直线l上找一点K,使得MK+NK最小.
    问题探究
    (2)在等边三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB度数的大小.
    问题解决
    (3)如图,矩形ABCD是某公园的平面图,AB=30米,BC=60米,现需要在对角线BD上修一凉亭E,使得到公园出口A、B,C的距离之和最小.问:是否存在这样的点E?
    若存在,请画出点E的位置,并求出EA+EB+EC的和的最小值;若不存在,请说明理由.

    【分析】(1)根据两点间线段距离最短,连接点M、N是,与直线l交于点K,点K 即为所求;
    (2)把△APB绕点A逆时针旋转60°得到△ACP′,由旋转的性质可知APP′是等边三角形,所以∠AP′P=60°,由勾股定理逆定理可知∠PP′C=为直角,从而求得∠AP′C为150°,所以∠APB为150°;
    (3)把△ABE绕点B逆时针旋转60°得到△A'BE′,由旋转的性质,A′B=AB=30,BE′=BE,A'E′=AE,∠E′BE=60°,A'BA=60°,所以△E′BE是等边三角形,
    根据两点间线段距离最短,可知当EA+EB+EC=A'C时最短,连接A'C,与BD的交点时,点E即为所求,此时EA+EB+EC最短,最短距离为A'C的长度,然后过点A'作A'G⊥BC,利用勾股定理求出A'C的长度,即求得EA+EB+EC的和的最小值.
    【解答】解:(1)如图1,连接点M、N,与直线l交于点K,点K 即为所求.

    (2)如图2,把△APB绕点A逆时针旋转60°得到△AP′C,

    由旋转的性质,P′A=PA=3,P′C=PB=4,∠PAP′=60°,
    ∴△APP′是等边三角形,
    ∴PP′=PA=3,∠AP′P=60°,
    ∵PP′2+P′C2=32+42=25,PC2=52=25,
    ∴PP′2+P′C2=PC2,
    ∴∠PP′C=90°,
    ∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°;
    故∠APB=∠AP′C=150°;
    (3)如图连接AC,设在△ABC内一点M,,把△ABM绕点B逆时针旋转60°得到△GBM',
    由旋转的性质,GB=AB=30,BM′=BM,GM=AM,GB=AB,∠M′BM=60°,∠GBA=60°,
    ∴△M′BM、△GAB是等边三角形,
    ∴BM=MM',
    ∴MA+MB+MC=GM′+MM'+MC,
    根据两点间线段距离最短,可知当MA+MB+MC=GC时最短,
    ∵△GAB是等边三角形,
    ∴以AC为一边作等边三角形ACF,
    ∴MA+MB+MC最小值为BF的长,
    此时点M在线段BF上,
    ∴点M为CG、BF的交点.
    若点M与点E重合,即M在对角线BD 上,
    则点M为BF与BD的交点,此时点M(E)与点B重合,
    显然不符合题意,故点M不在对角线BD上,
    即对角线BD上不存在这样的点E,使得到公园出口A、B,C的距离之和最小.

    【点评】本题是四边形综合题,主要考查了旋转知识、三角形全等、特殊角直角三角形、等边三角形的性质和勾股定理,熟练掌握旋转知识构建全等三角形是解题的关键.
    题型二:费马点模型
    一.填空题(共2小题)
    1.(2020•碑林区校级模拟)如图,在边长为6的正方形ABCD中,点M,N分别为AB、BC上的动点,且始终保持BM=CN.连接MN,以MN为斜边在矩形内作等腰Rt△MNQ,若在正方形内还存在一点P,则点P到点A、点D、点Q的距离之和的最小值为 3+3 .

    【分析】根据勾股定理得到关于x的一元二次函数,根据函数的性质求得当BM=BN=0时,Q点到AD距离最近,此时Q点是AC和BD的交点,过点Q作QM⊥AD于点M′,在△ADQ内部过A、D分别作∠M′DP=∠M′AP=30°,则∠APD=∠APQ=∠DPQ=120°,点P就是费马点,此时PA+PD+PQ最小,根据特殊直角三角形才求出AQ,PA,PD,PQ的长,进而得出答案.
    【解答】解:设BM=x,则BN=6﹣x,
    ∵MN2=BM2+BN2,
    ∴MN2=x2+(6﹣x)2=2(x﹣3)2+18,
    ∴当x=3时,MN最小,
    此时Q点离AD最近,
    ∵BM=BN=3,
    ∴Q点是AC和BD的交点,
    ∴AQ=DQ=AD=3,
    过点Q作QM′⊥AD于点M′,在△ADQ内部过A、D分别作∠M′DP=∠M′AP=30°,则∠APD=∠APQ=∠DPQ=120°,点P就是费马点,此时PA+PD+PQ最小,
    在等腰Rt△AQD中,AQ=DQ=3,QM′⊥AD,
    ∴AM=QM′=AQ=3,
    故cos30°=,
    解得:PA=2,则PM′=,
    故QP=3﹣,同法可得PD=2,
    则PA+PD+PQ=2×+3﹣=3+3,
    ∴点P到点A、点D、点Q的距离之和的最小值为3+3,
    故答案为3+3.

    【点评】此题主要考查了正方形的性质,等腰直角三角形的性质,解直角三角,正确画出图形进而求出PA的长是解题关键.
    2.(2020•崇州市模拟)如果点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点.已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为的等腰直角三角形DEF的费马点,则PD+PE+PF= +1 .

    【分析】过点D作DM⊥EF于点M,在△BDE内部过E、F分别作∠MEP=∠MFP=30°,则∠EPF=∠FPD=∠EPD=120°,点P就是费马点,求出PE,PF,DP的长即可解决问题;
    【解答】解:如图:过点D作DM⊥EF于点M,在△BDE内部过E、F分别作∠MEP=∠MFP=30°,则∠EPF=∠FPD=∠EPD=120°,点P就是费马点,
    在等腰Rt△DEF中,DE=DF=,DM⊥EF,
    ∴EF=DE=2
    ∴EM=DM=1,
    故cos30°=,
    解得:PE=,则PM=,
    故DP=1﹣,同法可得PF=
    则PD+PE+PF=2×+1﹣=+1.
    故答案为+1.

    【点评】此题主要考查了解直角三角,正确画出图形进而求出PE的长是解题关键.
    二.解答题(共5小题)
    3.(2021•雁塔区校级模拟)【问题情境】
    如图1,在△ABC中,∠A=120°,AB=AC,BC=5,则△ABC的外接圆的半径值为  5 .
    【问题解决】
    如图2,点P为正方形ABCD内一点,且∠BPC=90°,若AB=4,求AP的最小值.
    【问题解决】
    如图3,正方形ABCD是一个边长为3cm的隔离区域设计图,CE为大门,点E在边BC上,CE=cm,点P是正方形ABCD内设立的一个活动岗哨,到B、E的张角为120°,即∠BPE=120°,点A、D为另两个固定岗哨.现需在隔离区域内部设置一个补水供给点Q,使得Q到A、D、P三个岗哨的距离和最小,试求QA+QD+QP的最小值.(保留根号或结果精确到1cm,参考数据≈1.7,10.52=110.25).

    【分析】(1)作出三角形的外接圆O,证明△OBA是等边三角形,利用三线合一性质计算即可;
    (2 )点P在以BC为直径的圆上,根据圆心,P,A三点共线时AP最小,计算即可;
    (3)如图3,设∠BPE所在圆的圆心为点O,根据(1)可得∠BPE所在圆的半径,以点D为旋转中心,将△DQA顺时针旋转60°,得到△DFN,当N,F,Q,P,O共线时,QA+QD+QP最小,构造直角三角形求解即可.
    【解答】解:(1)如图1,作△ABC的外接圆O,作直径AD,连接OB,

    ∵AB=AC,
    ∴AO⊥BC,∠BAO=60°,
    ∵OA=OB,
    ∴△OBA是等边三角形,
    ∴AB=OA=OB,
    设AD与BC交于点E,BE=BC=,
    在直角三角形ABE中,
    ∵sin∠BAO=,
    ∴sin60°==,
    ∴AB=5,
    ∴OA=5,
    故答案为:5;

    (2 )如图2,

    ∵∠BPC=90°,
    ∴点在以BC为直径的圆上,设圆心为点O,
    则OP=BC=2,
    ∴O,P,A三点线时AP最小,
    在直角三角形ABO中,
    AO==2,
    ∵PO=2,
    ∴AP的最小值为:AO﹣PO=2﹣2;

    (3)如图3,设∠BPE所在圆的圆心为点O,根据(1)可得∠BPE所在圆的半径为=2,以点D为旋转中心,将△DQA顺时针旋转60°,得到△DFN,当N,F,Q,P,O共线时,QA+QD+QP最小,过点N作NG⊥AB交BA的延长线于点G,连接AN,则△AND是等边三角形,过点O作OM⊥GN于M交BC于点H,连接OB,

    ∵四边形ABCD是正方形,
    ∴AD∥BC∥GN,
    ∴OH⊥BC,
    ∵BE=2,
    ∴BH=,
    ∴OH==1,
    ∵AD=DN,∠ADN=60°,
    ∴△AND是等边三形,且AN=3,∠NAD=60°,
    ∴∠GAN=30°,
    ∴GN=ANsin30°=,AG=ANcos30°=,
    ∴OM=OH+AB+AG=+1+3=+3,MN=GN﹣BH=﹣=,
    ∴ON==≈11,
    ∴QA+QD+QP最小值为:11﹣2=9(cm).
    【点评】本题考查了正方形的性质、圆中半径相等,点与圆位置关系中的最值问题,费马点最值问题,旋转的思想,锐角三角函数,解题的关键是正确构造辅助圆,旋转60°处理费马点问题.
    4.(2021•山西模拟)阅读下列材料,完成后面相应的任务:

    费马(Ferrmat,1601年8月17日﹣1665年1月12日),生于法国南部图卢兹(Toulouse)附近的波蒙•德•罗曼,被誉为业余数学家之王.1643年,费马曾提出了一个著名的几何问题:给定不在一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置.另一位数学家托里拆利成功地解决了这个问题:如图1,△ABC(三个内角均小于120°)的三条边的张角都等于120°,即满足∠APB=∠BPC=∠APC=120°的点P,就是到点A,B,C的距离之和最小的点,后来人们把这个点P称为“费马点”.
    下面是“费马点”的证明过程:如图2,将△APB绕着点B逆时针旋转60°得到△A′P′B,使得A′P′落在△ABC外,则△A′AB为等边三角形,∴P′B=PB=PP′,于是PA+PB+PC=P′A′+PP′+PC≥A′C,….
    任务:(1)材料中,判定△A′AB为等边三角形的依据是  顶角为60°等腰三角形是等边三角形 .
    (2)请你完成剩余的部分.
    (3)如图,△ABC为锐角三角形,以AC为一边作等边△ACD,⊙O是△ACD的外接圆,连接BD交⊙O于点M,求证:M是△ABC的费马点.

    【分析】(1)判定依据是顶角为60°等腰三角形是等边三角形;
    (2)根据题中条件可知当A'P'PC四点共线时PA+PB+PC有最小值为A'C的长度,求出此时∠APB=∠BPC=∠APC=120°即可;
    (3)先根据MD是直径和△ACD为等边三角形证直角三角形MCD和直角三角形MAD全等,得出∠ADM+∠CDM=∠ADC=30°,再根据外角定义计算出∠AMB=∠BMC=∠AMC=120°即可.
    【解答】解:(1)由题知判定依据的是顶角为60°等腰三角形是等边三角形;
    (2)补充如下:
    ∴当A',P',P,C四点在同一直线上时PA+PB+PC有最小值为A'C的长度,
    ∵P′B=PB,∠P'BP=60°,
    ∴△P'BP为等边三角形,
    则当A',P',P,C四点在同一直线上时,
    ∠BPC=180°﹣∠P'PB=180°﹣60°=120°,
    ∠APB=∠A'PB=180°﹣∠BP'P=180°﹣60°=120°,
    ∠APC=360°﹣∠BPC﹣∠APC=360°﹣120°﹣120°=120°,
    ∴满足∠APB=∠BPC=∠APC=120°的点P,就是到点A,B,C的距离之和最小的点;
    (3)如右图,连接MA,MC,
    ∵△ACD为等边三角形,
    ∴∠DAC=∠ADC=∠ACD=60°,
    又∵⊙O是△ACD的外接圆,
    ∴∠AMD=∠ACD=60°,
    ∴∠AMB=180°﹣∠AMD=180°﹣60°=120°,
    同理可得∠BMC=120°,
    ∴∠AMC=360°﹣∠AMB﹣∠BMC=360°﹣120°﹣120°=120°,
    即点M是△ABC的“费马点”.

    【点评】本题主要考查“费马点”的证明过程,熟练掌握等边三角形的性质性质是解题的关键.
    5.(2018•禹会区一模)如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.
    (1)如果点P为锐角△ABC的费马点,且∠ABC=60°.
    ①求证:△ABP∽△BCP;
    ②若PA=3,PC=4,则PB= 2 .
    (2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD相交于P点.如图(2)
    ①求∠CPD的度数;
    ②求证:P点为△ABC的费马点.

    【分析】(1)①根据题意,利用内角和定理及等式性质得到一对角相等,利用两角相等的三角形相似即可得证;
    ②由三角形ABP与三角形BCP相似,得比例,将PA与PC的长代入求出PB的长即可;
    (2)①根据三角形ABE与三角形ACD为等边三角形,利用等边三角形的性质得到两对边相等,两个角为60°,利用等式的性质得到夹角相等,利用SAS得到三角形ACE与三角形ABD全等,利用全等三角形的对应角相等得到∠1=∠2,再由对顶角相等,得到∠5=∠6,即可求出所求角度数;
    ②由三角形ADF与三角形CPF相似,得到比例式,变形得到积的恒等式,再由对顶角相等,利用两边成比例,且夹角相等的三角形相似得到三角形AFP与三角形CFD相似,利用相似三角形对应角相等得到∠APF为60°,由∠APD+∠DPC,求出∠APC为120°,进而确定出∠APB与∠BPC都为120°,即可得证.
    【解答】(1)证明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,
    ∴∠PAB=∠PBC,
    又∵∠APB=∠BPC=120°,
    ∴△ABP∽△BCP,
    ②解:∵△ABP∽△BCP,
    ∴=,
    ∴PB2=PA•PC=12,
    ∴PB=2;
    故答案为:2;
    (2)解:①∵△ABE与△ACD都为等边三角形,
    ∴∠BAE=∠CAD=60°,AE=AB,AC=AD,
    ∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,
    在△ACE和△ABD中,

    ∴△ACE≌△ABD(SAS),
    ∴∠1=∠2,
    ∵∠3=∠4,
    ∴∠CPD=∠6=∠5=60°;
    ②证明:方法一:∵△ADF∽△CFP,
    ∴=,
    ∴AF•PF=DF•CP,
    ∵∠AFP=∠CFD,
    ∴△AFP∽△CDF.
    ∴∠APF=∠ACD=60°,
    ∴∠APC=∠CPD+∠APF=120°,
    ∴∠BPC=120°,
    ∴∠APB=360°﹣∠BPC﹣∠APC=120°,
    ∴P点为△ABC的费马点.
    方法二:由①知:∠CPD=60°,
    ∴∠BPC=180°﹣∠CPD=120°,
    由①知:∠1=∠2,
    ∴A,P,C,D共圆,
    ∴∠APC+∠ADC=180°,
    ∴∠APC=180°﹣∠ADC=120°,
    ∴∠APB=360°﹣∠BPC﹣∠APC=120°,
    ∴P点为△ABC的费马点.

    【点评】此题属于相似形综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,费马点的定义,以及等边三角形的性质,熟练掌握判定与性质是解本题的关键.
    6.(2018•温岭市模拟)(1)知识储备
    ①如图1,已知点P为等边△ABC外接圆的BC上任意一点.求证:PB+PC=PA.
    ②定义:在△ABC所在平面上存在一点P,使它到三角形三顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离.
    (2)知识迁移
    ①我们有如下探寻△ABC(其中∠A,∠B,∠C均小于120°)的费马点和费马距离的方法:
    如图2,在△ABC的外部以BC为边长作等边△BCD及其外接圆,根据(1)的结论,易知线段  AD 的长度即为△ABC的费马距离.
    ②在图3中,用不同于图2的方法作出△ABC的费马点P(要求尺规作图).
    (3)知识应用
    ①判断题(正确的打√,错误的打×):
    ⅰ.任意三角形的费马点有且只有一个  √ ;
    ⅱ.任意三角形的费马点一定在三角形的内部  × .
    ②已知正方形ABCD,P是正方形内部一点,且PA+PB+PC的最小值为,求正方形ABCD的
    边长.

    【分析】(1)①根据已知首先得出△PCE为等边三角形,进而得出△ACP≌△BCE(SAS),即AP=AE+EP=BP+PE=BP+PC;
    (2)①利用(1)中结论得出PA+PB+PC=PA+(PB+PC)=PA+PD;以及线段的性质“两点之间线段最短”容易获解;
    ②画出图形即可;也可以将AC绕点C按顺时针旋转60°得到A′C,连接A′B,作∠A′PC=60°,然后在A′P上截取PP′=PC,则△P′PC是等边三角形,由旋转的性质及两点之间线段最短即可得出结论;
    (3)①根据费马点和费马距离的定义直接判定即可;
    ②将△ABP沿点B逆时针旋转60°到△A1BP1,如图5,根据PA+PB+PC的最小值为,得P1A1+PP1+PC的最小值为,即A1C=,设正方形的边长为2x,根据勾股定理列方程得:得:,解出可得正方形的边长.
    【解答】(1)①证明:在PA上取一点E,使PE=PC,连接CE,
    ∵△ABC是等边三角形,
    ∴∠APC=∠ABC=60°,
    又∵PE=PC,
    ∴△PEC是正三角形,
    ∴CE=CP,∠ACB=∠ECP=60°,
    ∴∠ACE=∠BCP,
    又∵∠PBC=∠PAC,BC=AC,
    ∴△ACE≌△BCP (ASA),
    ∴AE=PB,
    ∴PB+PC=AE+PE=AP;(4分)

    (2)①如图2,得:PA+PB+PC=PA+(PB+PC)=PA+PD,
    ∴当A、P、D共线时,PA+PB+PC的值最小,
    ∴线段AD的长度即为△ABC的费马距离,
    故答案为:AD; (6分)
    ②过AB和AC分别向外作等边三角形,连接CD,BE,交点即为P.(过AC或AB作外接圆视作与图2相同的方法,不得分). (8分)

    (3)①ⅰ.(√);
    ⅱ.当三角形有一内角大于或等于120°时,所求三角形的费马点为三角形最大内角的顶点(×) (10分)
    故答案为:i,√,ii,×;
    ②解:将△ABP沿点B逆时针旋转60°到△A1BP1,
    如图5,过A1作A1H⊥BC,交CB的延长线于H,连接P1P,
    易得:A1B=AB,PB=P1B,PA=P1 A1,∠P1BP=∠A1BA=60°,
    ∵PB=P1B,∠P1BP=60°,
    ∴△P1PB是正三角形,
    ∴PP1=PB,
    ∵PA+PB+PC的最小值为,
    ∴P1A1+PP1+PC的最小值为,
    ∴A1,P1,P,C在同一直线上,即A1C=,(12分)
    设正方形的边长为2x,
    ∵∠A1BA=60°,∠CBA=90°,
    ∴∠1=30°,
    在Rt△A1HB中,A1B=AB=2x,∠1=30°,
    得:A1H=x,BH=,
    在Rt△A1HC中,由勾股定理得:,
    解得:x1=1 x2=﹣1(舍去)
    ∴正方形ABCD的边长为2. (14分)



    【点评】此题是圆的综合题,也是阅读理解型问题,主要考查了新定义:三角形费马点和费马距离,还考查了等边三角形的性质、三角形全等、勾股定理等知识.难度很大,理解新定义是本题的关键.
    7.(2018•山西模拟)皮埃尔•德•费马,17世纪法国律师和业余数学家,被誉为“业余数学家之王”.1638年勒•笛卡儿邀请费马思考关于三个顶点距离为定值的函数问题,费马经过思考并由此提出费马点的相关结论.
    定义:若一个三角形的最大内角小于120°,则在其内部有一点,可使该点所对三角形三边的张角均为120°,此时该点叫做这个三角形的费马点.例如,如图1,点P是△ABC的费马点.
    请结合阅读材料,解决下列问题:
    已知:如图2,锐角△DEF.
    (1)尺规作图,并标明字母.
    ①在△DEF外,以DF为一边作等边△DFG.
    ②作△DFG的外接圆⊙O.
    ③连接EG交⊙O于点M.
    (2)求证:(1)中的点M是△DEF的费马点.

    【分析】(1)根据作图步骤直接作图即可得出结论;
    (2)分别求出∠DMF=120°,∠DME=120°,∠EMF=120°,即可得出结论、
    【解答】解:根据作图步骤,作出图形,如图1所示:

    (2)如图2,
    连接DM,FM,
    由作图知,DF=DG=FG,
    ∴△DFG是等边三角形,
    ∴∠DFG=∠FDG=∠DGF=60°,
    ∵四边形DMFG是圆内接四边形,
    ∴∠DGF+∠DMF=180°,
    ∴∠DMF=120°,
    ∵∠DMG=∠DFG=60°,
    ∴∠DME=180°﹣∠DMG=120°,
    ∵∠FMG=∠FDG=60°,
    ∴∠EMF=120°,
    ∴∠DME=∠DMF=∠EMF=120°,
    ∴点M是△DEF的费尔马点.
    【点评】此题是圆的综合题,主要考查基本作图的方法,圆的内接四边形的性质,圆周角定理,找出△DEF的费尔马点是解本题的关键.
    【真题训练】
    一.填空题(共2小题)
    1.(2021•丹东)已知:到三角形3个顶点距离之和最小的点称为该三角形的费马点.如果△ABC是锐角(或直角)三角形,则其费马点P是三角形内一点,且满足∠APB=∠BPC=∠CPA=120°.(例如:等边三角形的费马点是其三条高的交点).若AB=AC=,BC=2,P为△ABC的费马点,则PA+PB+PC= 5 ;若AB=2,BC=2,AC=4,P为△ABC的费马点,则PA+PB+PC= 2 .
    【分析】①作出图形,过B,C分别作∠DBP=∠DCP=30°,勾股定理解直角三角形即可;
    ②作出图形,将△APC绕点A逆时针旋转60°,P为△ABC的费马点则B,P,P',C'四点共线,即PA+PB+PC=BC',再用勾股定理求得即可.
    【解答】解:如图,过A作AD⊥BC,垂足为D,
    过B,C分别作∠DBP=∠DCP=30°,则PB=PC,P为△ABC的费马点,
    ∵AB=AC=,BC=2,
    ∴,
    ∴,
    ∴PD=1,
    ∴,
    ∴,
    ∴PA+PB+PC=5;
    ②如图:
    ∵AB=2,BC=2,AC=4,
    ∴AB2+BC2=16,AC2=16,
    ∴AB2+BC2=AC2,∠ABC=90°,
    ∵,
    ∴∠BAC=30°,
    将△APC绕点A逆时针旋转60°,
    由旋转可得:△APC≌△AP'C',
    ∴AP'=AP,PC=P'C',AC=AC',∠CAC'=∠PAP'=60°,
    ∴△APP′是等边三角形,
    ∴∠BAC'=90°,
    ∵P为△ABC的费马点,
    即B,P,P',C'四点共线时候,PA+PB+PC=BC',
    ∴PA+PB+PC=BP+PP'+P'C'=BC'==,
    故答案为:5,.

    【点评】本题考查了勾股定理,旋转的性质,锐角三角函数,等腰三角形性质,作出旋转的图形是解题的关键.本题旋转△PAB,△PBC也可,但必须绕顶点旋转.
    2.(2016•株洲)已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermatpoint).已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为的等腰直角三角形DEF的费马点,则PD+PE+PF= +1 .
    【分析】根据题意首先画出图形,过点D作DM⊥EF于点M,过E、F分别作∠MEP=∠MFP=30°就可以得到满足条件的点P,根据特殊直角三角形才求出PE,PF,PM,DP的长,进而得出答案.
    【解答】解:如图:等腰Rt△DEF中,DE=DF=,
    过点D作DM⊥EF于点M,过E、F分别作∠MEP=∠MFP=30°,
    则EM=DM=1,
    故cos30°=,
    解得:PE=PF==,则PM=,
    故DP=1﹣,
    则PD+PE+PF=2×+1﹣=+1.
    故答案为:+1.

    【点评】此题主要考查了解直角三角,正确画出图形进而求出PE的长是解题关键.
    二.解答题(共3小题)
    3.(2014•河南)(1)探究发现
    下面是一道例题及其解答过程,请补充完整.
    如图1,在等边三角形ABC内部有一点P,PA=3,PB=4,PC=5.求∠APB的度数.

    解:将△APC绕点A逆时针旋转60°,得到△AP′B,连接PP',则△APP'为等边三角形.
    ∵P′P=PA=3,PB=4,P'B=PC=5,
    ∴P'P2+PB2=P′B2
    △BPP'为 直角 三角形
    ∴∠APB的度数为 150° .
    (2)类比延伸
    如图2,在正方形ABCD内部有一点P,若∠APD=135°,试判断线段PA、PB、PD之间的数量关系,并说明理由.
    (3)联想拓展
    如图3,在△ABC中,∠BAC=120°,AB=AC.点P在直线AB上方且∠APB=60°,试判断是否存在常数k,满足(kPA)2+PB2=PC2.若存在,求出k的值;若不存在,请说明理由.
    【分析】(1)根据勾股定理的逆定理可得到△BPP′为直角三角形,且∠BPP′=90°,即可得到∠APB的度数;
    (2)把△ADP绕点A顺时针旋转90°得到△ABP′,根据旋转变换只改变图形的位置不改变图形的形状可得P′B=PD,P′A=PA,然后求出△APP′是等腰直角三角形,根据等腰直角三角形的性质得出PP′2=2PA2,∠PP′A=45°,再求出∠PP′B=90°,然后利用勾股定理得出PP′2+P′B2=PB2,等量代换得出2PA2+PD2=PB2.
    (3)将△APC 绕A点顺时针旋转120°得到△AP′B,连接PP′,过点A作AH⊥PP′,论证PP′=PA,再根据勾股定理代换即可.
    【解答】解:(1)如图1,将△APC绕点A逆时针旋转60°,得到△AP′B,连接PP′,则△APP′为等边三角形.
    ∵PP′=PA=3,PB=4,P′B=PC=5,
    ∴P′P2+PB2=P′B2.
    ∴△BPP′为直角三角形.
    ∴∠APB的度数为90°+60°=150°.
    故答案为:直角;150°;

    (2)2PA2+PD2=PB2.理由如下:
    如图2,把△ADP绕点A顺时针旋转90°得到△ABP′,连接PP′.
    则P′B=PD,P′A=PA,∠PAP′=90°,
    ∴△APP′是等腰直角三角形,
    ∴PP′2=PA2+P′A2=2PA2,∠PP′A=45°,
    ∵∠APD=135°,
    ∴∠AP′B=∠APD=135°,
    ∴∠PP′B=135°﹣45°=90°,
    在Rt△PP′B中,由勾股定理得,PP′2+P′B2=PB2,
    ∴2PA2+PD2=PB2.
    (3)k=±.

    证明:如图③
    将△APC 绕A点顺时针旋转120°得到△AP′B,连接PP′,过点A作AH⊥PP′,
    可得∠APP′=30°,PP′=PA,PC=P′B,
    ∵∠APB=60°,
    ∴∠BPP′=90°,
    ∴P′P2+BP2=P′B2,
    ∴(PA)2+PB2=PC2
    ∵(kPA)2+PB2=PC2,
    ∴k=±.

    【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了正方形的性质,等边三角形的判定与性质以及勾股定理的逆定理.
    4.(2010•永州)探究问题:
    (1)阅读理解:
    ①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离;
    ②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB•CD+BC•DA=AC•BD.此为托勒密定理;

    (2)知识迁移:
    ①请你利用托勒密定理,解决如下问题:
    如图(C),已知点P为等边△ABC外接圆的上任意一点.求证:PB+PC=PA;
    ②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:
    第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;
    第二步:在上任取一点P′,连接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+ P′D ;
    第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段 AD 的长度即为△ABC的费马距离.

    (3)知识应用:
    2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.
    已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.

    【分析】(2)知识迁移①问,只需按照题意套用托勒密定理,再利用等边三角形三边相等,将所得等式两边都除以等边三角形的边长,即可获证. ②问,借用①问结论,及线段的性质“两点之间线段最短”数学容易获解.
    (3)知识应用,在(2)的基础上先画出图形,再求解.
    【解答】(2)①证明:由托勒密定理可知PB•AC+PC•AB=PA•BC
    ∵△ABC是等边三角形
    ∴AB=AC=BC,
    ∴PB+PC=PA,
    ②P′D、AD,

    (3)解:如图,以BC为边长在△ABC的外部作等边△BCD,连接AD,则知线段AD的长即为最短距离.
    ∵△BCD为等边三角形,BC=4,
    ∴∠CBD=60°,BD=BC=4,
    ∵∠ABC=30°,∴∠ABD=90°,
    在Rt△ABD中,∵AB=3,BD=4,
    ∴AD===5(km),
    ∴从水井P到三村庄A、B、C所铺设的输水管总长度的最小值为5km.


    【点评】此题是一个综合性很强的题目,主要考查等边三角形的性质、三角形相似、解直角三角形等知识.难度很大,有利于培养同学们钻研问题和探索问题的精神.
    5.(2009•湖州)自选题:若P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.
    (1)若点P为锐角△ABC的费马点,且∠ABC=60°,PA=3,PC=4,则PB的值为  2 ;
    (2)如图,在锐角△ABC外侧作等边△ACB′连接BB′.求证:BB′过△ABC的费马点P,且BB′=PA+PB+PC.

    【分析】(1)由题意可得△ABP∽△BCP,所以PB2=PA•PC,即PB=2;
    (2)在BB'上取点P,使∠BPC=120°,连接AP,再在PB'上截取PE=PC,连接CE.由此可以证明△PCE为正三角形,再利用正三角形的性质得到PC=CE,∠PCE=60°,∠CEB'=120°,而△ACB'为正三角形,由此也可以得到AC=B'C,∠ACB'=60°,现在根据已知的条件可以证明△ACP≌△B'CE,然后利用全等三角形的性质即可证明题目的结论.
    【解答】解:(1)∵∠PAB+∠PBA=180°﹣∠APB=60°,
    ∠PBC+∠PBA=∠ABC=60°,
    ∴∠PAB=∠PBC,
    又∵∠APB=∠BPC=120°,
    ∴△ABP∽△BCP,
    ∴,
    ∴PB2=PA•PC=12,
    ∴PB=2;


    (2)证明:在BB'上取点P,使∠BPC=120°.连接AP,再在PB'上截取PE=PC,连接CE.

    ∠BPC=120°,
    ∴∠EPC=60°,
    ∴△PCE为正三角形,
    ∴PC=CE,∠PCE=60°,∠CEB'=120°.
    ∵△ACB'为正三角形,
    ∴AC=B′C,∠ACB'=60°,
    ∴∠PCA+∠ACE=∠ACE+∠ECB′=60°,
    ∴∠PCA=∠ECB′,
    ∴△ACP≌△B′CE,
    ∴∠APC=∠B′EC=120°,PA=EB′,
    ∴∠APB=∠APC=∠BPC=120°,
    ∴P为△ABC的费马点.
    ∴BB'过△ABC的费马点P,且BB'=EB'+PB+PE=PA+PB+PC.
    【点评】此题考查了等腰三角形与等边三角形的性质及三角形内角和为180°等知识;此类已知三角形边之间的关系求角的度数的题,一般是利用等腰(等边)三角形的性质得出有关角的度数,进而求出所求角的度数.




    相关试卷

    2022年中考数学考前30天迅速提分专题15 与圆相关的三种位置关系与真题训练(含答案):

    这是一份2022年中考数学考前30天迅速提分专题15 与圆相关的三种位置关系与真题训练(含答案),共38页。

    2022年中考数学考前30天迅速提分专题13 特殊四边形综合的六种题型与真题训练(含答案):

    这是一份2022年中考数学考前30天迅速提分专题13 特殊四边形综合的六种题型与真题训练(含答案),共159页。试卷主要包含了5°.,8,等内容,欢迎下载使用。

    2022年中考数学考前30天迅速提分专题04 函数(含答案):

    这是一份2022年中考数学考前30天迅速提分专题04 函数(含答案),共96页。试卷主要包含了4 函数,4m/s.等内容,欢迎下载使用。

    英语朗读宝
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map