江西省赣州市石城县2022年中考数学模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.如图所示,有一条线段是()的中线,该线段是( ).
A.线段GH B.线段AD C.线段AE D.线段AF
2.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()
A.米2 B.米2 C.米2 D.米2
3.一次函数的图象上有点和点,且,下列叙述正确的是
A.若该函数图象交y轴于正半轴,则
B.该函数图象必经过点
C.无论m为何值,该函数图象一定过第四象限
D.该函数图象向上平移一个单位后,会与x轴正半轴有交点
4.如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为( )
A. cm B.cm C.cm D. cm
5.如图,正方形ABCD的边长为4,点M是CD的中点,动点E从点B出发,沿BC运动,到点C时停止运动,速度为每秒1个长度单位;动点F从点M出发,沿M→D→A远动,速度也为每秒1个长度单位:动点G从点D出发,沿DA运动,速度为每秒2个长度单位,到点A后沿AD返回,返回时速度为每秒1个长度单位,三个点的运动同时开始,同时结束.设点E的运动时间为x,△EFG的面积为y,下列能表示y与x的函数关系的图象是( )
A. B.
C. D.
6.在国家“一带一路”倡议下,我国与欧洲开通了互利互惠的中欧专列.行程最长,途经城市和国家最多的一趟专列全程长13000 km,将13000用科学记数法表示应为( )
A.0.13×105 B.1.3×104 C.1.3×105 D.13×103
7.如图,Rt△ABC中,∠C=90°,∠A=35°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=( )
A.35° B.60° C.70° D.70°或120°
8.小丽只带2元和5元的两种面额的钞票(数量足够多),她要买27元的商品,而商店不找零钱,要她刚好付27元,她的付款方式有( )种.
A.1 B.2 C.3 D.4
9.已知抛物线y=(x﹣)(x﹣)(a为正整数)与x轴交于Ma、Na两点,以MaNa表示这两点间的距离,则M1N1+M2N2+…+M2018N2018的值是( )
A. B. C. D.
10.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )
A.80° B.90° C.100° D.102°
二、填空题(本大题共6个小题,每小题3分,共18分)
11.图,A,B是反比例函数y=图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为3,则k的值为________.
12.的相反数是_____,倒数是_____,绝对值是_____
13.如图所示,直线y=x+b交x轴A点,交y轴于B点,交双曲线于P点,连OP,则OP2﹣OA2=__.
14.如果等腰三角形的两内角度数相差45°,那么它的顶角度数为_____.
15.如图,已知圆锥的母线 SA 的长为 4,底面半径 OA 的长为 2,则圆锥的侧面积等于 .
16.的倒数是 _____________.
三、解答题(共8题,共72分)
17.(8分)先化简,再求值:(x﹣3)÷(﹣1),其中x=﹣1.
18.(8分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.
(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?
(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.
19.(8分)如图,已知▱ABCD.作∠B的平分线交AD于E点。(用尺规作图法,保留作图痕迹,不要求写作法);若▱ABCD的周长为10,CD=2,求DE的长。
20.(8分)如图,将矩形ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.
(1)求证:△ABF≌△EDF;
(2)若AB=6,BC=8,求AF的长.
21.(8分)如图,在平面直角坐标系中,一次函数y=﹣x+2的图象交x轴于点P,二次函数y=﹣x2+x+m的图象与x轴的交点为(x1,0)、(x2,0),且+=17
(1)求二次函数的解析式和该二次函数图象的顶点的坐标.
(2)若二次函数y=﹣x2+x+m的图象与一次函数y=﹣x+2的图象交于A、B两点(点A在点B的左侧),在x轴上是否存在点M,使得△MAB是以∠ABM为直角的直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.
22.(10分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.该项绿化工程原计划每天完成多少米2?该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?
23.(12分)如图1,已知扇形MON的半径为,∠MON=90°,点B在弧MN上移动,联结BM,作OD⊥BM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,∠COM的正切值为y.
(1)如图2,当AB⊥OM时,求证:AM=AC;
(2)求y关于x的函数关系式,并写出定义域;
(3)当△OAC为等腰三角形时,求x的值.
24.石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.设每件童装降价x元时,每天可销售______ 件,每件盈利______ 元;(用x的代数式表示)每件童装降价多少元时,平均每天赢利1200元.要想平均每天赢利2000元,可能吗?请说明理由.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.
【详解】
根据三角形中线的定义知:线段AD是△ABC的中线.
故选B.
【点睛】
本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
2、C
【解析】
连接OD,
∵弧AB的半径OA长是6米,C是OA的中点,∴OC=OA=×6=1.
∵∠AOB=90°,CD∥OB,∴CD⊥OA.
在Rt△OCD中,∵OD=6,OC=1,∴.
又∵,∴∠DOC=60°.
∴(米2).
故选C.
3、B
【解析】
利用一次函数的性质逐一进行判断后即可得到正确的结论.
【详解】
解:一次函数的图象与y轴的交点在y轴的正半轴上,则,,若,则,故A错误;
把代入得,,则该函数图象必经过点,故B正确;
当时,,,函数图象过一二三象限,不过第四象限,故C错误;
函数图象向上平移一个单位后,函数变为,所以当时,,故函数图象向上平移一个单位后,会与x轴负半轴有交点,故D错误,
故选B.
【点睛】
本题考查了一次函数图象上点的坐标特征、一次函数图象与几何变换,解题的关键是熟练掌握一次函数的性质,灵活应用这些知识解决问题,属于中考常考题型.
4、B
【解析】
试题解析:∵菱形ABCD的对角线
根据勾股定理,
设菱形的高为h,
则菱形的面积
即
解得
即菱形的高为cm.
故选B.
5、A
【解析】
当点F在MD上运动时,0≤x<2;当点F在DA上运动时,2<x≤4.再按相关图形面积公式列出表达式即可.
【详解】
解:当点F在MD上运动时,0≤x<2,则:
y=S梯形ECDG-S△EFC-S△GDF=,
当点F在DA上运动时,2<x≤4,则:
y=,
综上,只有A选项图形符合题意,故选择A.
【点睛】
本题考查了动点问题的函数图像,抓住动点运动的特点是解题关键.
6、B
【解析】
试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.将13000用科学记数法表示为:1.3×1.
故选B.
考点:科学记数法—表示较大的数
7、D
【解析】
①当点B落在AB边上时,根据DB=DB1,即可解决问题,②当点B落在AC上时,在RT△DCB2中,根据∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解决问题.
【详解】
①当点B落在AB边上时,
∵,
∴,
∴,
②当点B落在AC上时,
在中,
∵∠C=90°, ,
∴,
∴,
故选D.
【点睛】
本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论.
8、C
【解析】
分析:先根据题意列出二元一次方程,再根据x,y都是非负整数可求得x,y的值.
详解:解:设2元的共有x张,5元的共有y张,
由题意,2x+5y=27
∴x=(27-5y)
∵x,y是非负整数,
∴或或,
∴付款的方式共有3种.
故选C.
点睛:本题考查二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再根据实际意义求解.
9、C
【解析】
代入y=0求出x的值,进而可得出MaNa=-,将其代入M1N1+M2N2+…+M2018N2018中即可求出结论.
【详解】
解:当y=0时,有(x-)(x-)=0,
解得:x1=,x2=,
∴MaNa=-,
∴M1N1+M2N2+…+M2018N2018=1-+-+…+-=1-=.
故选C.
【点睛】
本题考查了抛物线与x轴的交点坐标、二次函数图象上点的坐标特征以及规律型中数字的变化类,利用二次函数图象上点的坐标特征求出MaNa的值是解题的关键.
10、A
【解析】
分析:根据平行线性质求出∠A,根据三角形内角和定理得出∠2=180°∠1−∠A,代入求出即可.
详解:∵AB∥CD.
∴∠A=∠3=40°,
∵∠1=60°,
∴∠2=180°∠1−∠A=80°,
故选:A.
点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1.
【解析】
先设点D坐标为(a,b),得出点B的坐标为(2a,2b),A的坐标为(4a,b),再根据△AOD的面积为3,列出关系式求得k的值.
解:设点D坐标为(a,b),
∵点D为OB的中点,
∴点B的坐标为(2a,2b),
∴k=4ab,
又∵AC⊥y轴,A在反比例函数图象上,
∴A的坐标为(4a,b),
∴AD=4a﹣a=3a,
∵△AOD的面积为3,
∴×3a×b=3,
∴ab=2,
∴k=4ab=4×2=1.
故答案为1
“点睛”本题主要考查了反比例函数系数k的几何意义,以及运用待定系数法求反比例函数解析式,根据△AOD的面积为1列出关系式是解题的关键.
12、 ,
【解析】
∵只有符号不同的两个数是互为相反数,
∴的相反数是;
∵乘积为1的两个数互为倒数,
∴的倒数是;
∵负数得绝对值是它的相反数,
∴绝对值是
故答案为(1). (2). (3).
13、1
【解析】
解:∵直线y=x+b与双曲线 (x>0)交于点P,设P点的坐标(x,y),
∴x﹣y=﹣b,xy=8,
而直线y=x+b与x轴交于A点,
∴OA=b.
又∵OP2=x2+y2,OA2=b2,
∴OP2﹣OA2=x2+y2﹣b2=(x﹣y)2+2xy﹣b2=1.
故答案为1.
14、90°或30°.
【解析】
分两种情况讨论求解:顶角比底角大45°;顶角比底角小45°.
【详解】
设顶角为x度,则
当底角为x°﹣45°时,2(x°﹣45°)+x°=180°,
解得x=90°,
当底角为x°+45°时,2(x°+45°)+x°=180°,
解得x=30°,
∴顶角度数为90°或30°.
故答案为:90°或30°.
【点睛】
本题考查了等腰三角形的两个底角相等即分类讨论的数学思想,解答本题的关键是分顶角比底角大45°或顶角比底角小45°两种情况进行计算.
15、8π
【解析】
圆锥的侧面积就等于母线长乘底面周长的一半.依此公式计算即可.
【详解】
侧面积=4×4π÷2=8π.
故答案为8π.
【点睛】
本题主要考查了圆锥的计算,正确理解圆锥的侧面积的计算可以转化为扇形的面积的计算,理解圆锥与展开图之间的关系.
16、
【解析】
先把带分数化成假分数可得:,然后根据倒数的概念可得:的倒数是,故答案为:.
三、解答题(共8题,共72分)
17、﹣x+1,2.
【解析】
先将括号内的分式通分,再将乘方转化为乘法,约分,最后代入数值求解即可.
【详解】
原式=(x﹣2)÷(﹣)
=(x﹣2)÷
=(x﹣2)•
=﹣x+1,
当x=﹣1时,原式=1+1=2.
【点睛】
本题考查了整式的混合运算-化简求值,解题的关键是熟练的掌握整式的混合运算法则.
18、 (1) ;(2).
【解析】
(1)直接利用概率公式求解;
(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.
【详解】
(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;
(2)画树状图为:
共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.
19、(1)作图见解析;(2)1
【解析】
(1)以点B为圆心,任意长为半径画弧分别与AB、BC相交。然后再分别以交点为圆心,以交点间的距离为半径分别画弧,两弧相交于一点,画出射线BE即得.
(2)根据平行四边形的对边相等,可得AB+AD=5,由两直线平行内错角相等可得∠AEB=∠EBC,利用角平分线即得∠ABE=∠EBC,即证 ∠AEB=∠ABE .根据等角对等边可得AB=AE=2,从而求出ED的长.
【详解】
(1)解:如图所示:
(2)解:∵平行四边形ABCD的周长为10
∴AB+AD=5
∵AD//BC
∴∠AEB=∠EBC
又∵BE平分∠ABC
∴∠ABE=∠EBC
∴∠AEB=∠ABE
∴AB=AE=2
∴ED=AD-AE=3-2=1
【点睛】
此题考查作图-基本作图和平行四边形的性质,解题关键在于掌握作图法则
20、(1)见解析;(2)
【解析】
(1)根据矩形的性质可得AB=CD,∠C=∠A=90°,再根据折叠的性质可得DE=CD,∠C=∠E=90°,然后利用“角角边”证明即可;
(2)设AF=x,则BF=DF=8-x,根据勾股定理列方程求解即可.
【详解】
(1)证明:在矩形ABCD中,AB=CD,∠A=∠C=90°,
由折叠得:DE=CD,∠C=∠E=90°,
∴AB=DE,∠A=∠E=90°,
∵∠AFB=∠EFD,
∴△ABF≌△EDF(AAS);
(2)解:∵△ABF≌△EDF,
∴BF=DF,
设AF=x,则BF=DF=8﹣x,
在Rt△ABF中,由勾股定理得:
BF2=AB2+AF2,即(8﹣x)2=x2+62,
x=,即AF=
【点睛】
本题考查了翻折变换的性质,全等三角形的判定与性质,矩形的性质,勾股定理,翻折前后对应边相等,对应角相等,利用勾股定理列出方程是解题的关键.
21、(1)y=﹣x2+x+2=(x﹣)2+,顶点坐标为(,);(2)存在,点M(,0).理由见解析.
【解析】
(1)由根与系数的关系,结合已知条件可得9+4m=17,解方程求得m的值,即可得求得二次函数的解析式,再求得该二次函数图象的顶点的坐标即可;(2)存在,将抛物线表达式和一次函数y=﹣x+2联立并解得x=0或,即可得点A、B的坐标为(0,2)、(,),由此求得PB=, AP=2,过点B作BM⊥AB交x轴于点M,证得△APO∽△MPB,根据相似三角形的性质可得 ,代入数据即可求得MP=,再求得OM=,即可得点M的坐标为(,0).
【详解】
(1)由题意得:x1+x2=3,x1x2=﹣2m,
x12+x22=(x1+x2)2﹣2x1x2=17,即:9+4m=17,
解得:m=2,
抛物线的表达式为:y=﹣x2+x+2=(x﹣)2+,
顶点坐标为(,);
(2)存在,理由:
将抛物线表达式和一次函数y=﹣x+2联立并解得:x=0或,
∴点A、B的坐标为(0,2)、(,),
一次函数y=﹣x+2与x轴的交点P的坐标为(6,0),
∵点P的坐标为(6,0),B的坐标为(,),点B的坐标为(0,2)、
∴PB==,
AP==2
过点B作BM⊥AB交x轴于点M,
∵∠MBP=∠AOP=90°,∠MPB=∠APO,
∴△APO∽△MPB,
∴ ,∴ ,
∴MP=,
∴OM=OP﹣MP=6﹣=,
∴点M(,0).
【点睛】
本题是一道二次函数的综合题,一元二次方程根与系数的关系、直线与抛物线的较大坐标.相似三角形的判定与性质,题目较为综合,有一定的难度,解决第二问的关键是求得PB、AP的长,再利用相似三角形的性质解决问题.
22、 (1)2000;(2)2米
【解析】
(1)设未知数,根据题目中的的量关系列出方程;
(2)可以通过平移,也可以通过面积法,列出方程
【详解】
解:(1)设该项绿化工程原计划每天完成x米2,
根据题意得:﹣= 4
解得:x=2000,
经检验,x=2000是原方程的解;
答:该绿化项目原计划每天完成2000平方米;
(2)设人行道的宽度为x米,根据题意得,
(20﹣3x)(8﹣2x)=56
解得:x=2或x=(不合题意,舍去).
答:人行道的宽为2米.
23、(1)证明见解析;(2) .();(3) .
【解析】
分析:(1)先判断出∠ABM=∠DOM,进而判断出△OAC≌△BAM,即可得出结论;
(2)先判断出BD=DM,进而得出,进而得出AE=,再判断出,即可得出结论;
(3)分三种情况利用勾股定理或判断出不存在,即可得出结论.
详解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.
∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.
∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,
∴AC=AM.
(2)如图2,过点D作DE∥AB,交OM于点E.
∵OB=OM,OD⊥BM,∴BD=DM.
∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.
∵DE∥AB,∴,
∴.()
(3)(i) 当OA=OC时.∵.在Rt△ODM中,.
∵.解得,或(舍).
(ii)当AO=AC时,则∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此种情况不存在.
(ⅲ)当CO=CA时,则∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此种情况不存在.
即:当△OAC为等腰三角形时,x的值为.
点睛:本题是圆的综合题,主要考查了相似三角形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y关于x的函数关系式是解答本题的关键.
24、(1)(20+2x),(40﹣x);(2)每件童装降价20元或10元,平均每天赢利1200元;(3)不可能做到平均每天盈利2000元.
【解析】
(1)、根据销售量=原销售量+因价格下降而增加的数量;每件利润=原售价-进价-降价,列式即可;
(2)、根据总利润=单件利润×数量,列出方程即可;(3)、根据(2)中的相关关系方程,判断方程是否有实数根即可.
【详解】
(1)、设每件童装降价x元时,每天可销售20+2x件,每件盈利40-x元,
故答案为(20+2x),(40-x);
(2)、根据题意可得:(20+2x)(40-x)=1200,
解得:
即每件童装降价10元或20元时,平均每天盈利1200元;
(3)、(20+2x)(40-x)=2000, ,
∵此方程无解,
∴不可能盈利2000元.
【点睛】
本题主要考查的是一元二次方程的实际应用问题,属于中等难度题型.解决这个问题的关键就是要根据题意列出方程.
2023年江西省赣州市石城县中考数学第一次联考试卷(含解析): 这是一份2023年江西省赣州市石城县中考数学第一次联考试卷(含解析),共26页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2023年江西省赣州市石城县中考数学第一次联考试卷(含解析): 这是一份2023年江西省赣州市石城县中考数学第一次联考试卷(含解析),共26页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2023年江西省赣州市会昌县中考数学模拟试卷(含解析): 这是一份2023年江西省赣州市会昌县中考数学模拟试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。