江苏省扬州市江都区实验初级中学2021-2022学年中考数学仿真试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.下列事件中为必然事件的是( )
A.打开电视机,正在播放茂名新闻 B.早晨的太阳从东方升起
C.随机掷一枚硬币,落地后正面朝上 D.下雨后,天空出现彩虹
2.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为( )
A. B. C.1 D.
3.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为( )
A.50° B.60° C.70° D.80°
4.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为( )
A.2:3 B.3:2 C.4:5 D.4:9
5.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为( )
A.90° B.60° C.45° D.30°
6.一元二次方程x2-2x=0的解是( )
A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-2
7.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是( )
A.图2 B.图1与图2 C.图1与图3 D.图2与图3
8.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是( )
A.28°,30° B.30°,28° C.31°,30° D.30°,30°
9.小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:
①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.
你认为其中正确信息的个数有
A.2个 B.3个 C.4个 D.5个
10.下列计算,正确的是( )
A. B.
C.3 D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.分解因式:xy2﹣2xy+x=_____.
12.如图,已知点A是反比例函数的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为______.
13.如图,直线l1∥l2,则∠1+∠2=____.
14.已知一组数据x1,x2,x3,x4,x5的平均数是3,则另一组新数据x1+1,x2+2,x3+3,x4+4,x5+5的平均数是_____.
15.一艘货轮以18km/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的东南方向有一灯塔B,货轮继续向东航行30分钟后到达C处,发现灯塔B在它的南偏东15°方向,则此时货轮与灯塔B的距离是________km.
16.如图,以点为圆心的两个同心圆中,大圆的弦是小圆的切线,点是切点,则劣弧AB 的长为 .(结果保留)
三、解答题(共8题,共72分)
17.(8分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:
成绩 | 频数 | 频率 |
优秀 | 45 | b |
良好 | a | 0.3 |
合格 | 105 | 0.35 |
不合格 | 60 | c |
(1)该校初三学生共有多少人?求表中a,b,c的值,并补全条形统计图.初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.
18.(8分)某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:
请将图2的统计图补充完整;根据本次调查的数据,每周参加课外辅导班的学科数的众数是 个学科;若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有 人.
19.(8分)如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球与楼的水平距离AD为100米,试求这栋楼的高度BC.
20.(8分)(操作发现)
(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.
①求∠EAF的度数;
②DE与EF相等吗?请说明理由;
(类比探究)
(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:
①∠EAF的度数;
②线段AE,ED,DB之间的数量关系.
21.(8分)列方程解应用题
八年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.
22.(10分)如图,将连续的奇数1,3,5,7…按如图中的方式排成一个数,用一个十字框框住5个数,这样框出的任意5个数中,四个分支上的数分别用a,b,c,d表示,如图所示.
(1)计算:若十字框的中间数为17,则a+b+c+d=______.
(2)发现:移动十字框,比较a+b+c+d与中间的数.猜想:十字框中a、b、c、d的和是中间的数的______;
(3)验证:设中间的数为x,写出a、b、c、d的和,验证猜想的正确性;
(4)应用:设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由.
23.(12分)如图,在Rt△ABC中,,CD⊥AB于点D,BE⊥AB于点B,BE=CD,连接CE,DE.
(1)求证:四边形CDBE为矩形;
(2)若AC=2,,求DE的长.
24.如图,已知函数(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E.
若AC=OD,求a、b的值;若BC∥AE,求BC的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件:
A、打开电视机,正在播放茂名新闻,可能发生,也可能不发生,是随机事件,故本选项错误;
B、早晨的太阳从东方升起,是必然事件,故本选项正确;
C、随机掷一枚硬币,落地后可能正面朝上,也可能背面朝上,故本选项错误;
D、下雨后,天空出现彩虹,可能发生,也可能不发生,故本选项错误.
故选B.
2、C
【解析】
作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,所以AH=MH=AM=,再根据角平分线性质得BM=MH=,则AB=2+,于是利用正方形的性质得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后证明△CON∽△CHM,再利用相似比可计算出ON的长.
【详解】
试题分析:作MH⊥AC于H,如图,
∵四边形ABCD为正方形,
∴∠MAH=45°,
∴△AMH为等腰直角三角形,
∴AH=MH=AM=×2=,
∵CM平分∠ACB,
∴BM=MH=,
∴AB=2+,
∴AC=AB=(2+)=2+2,
∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,
∵BD⊥AC,
∴ON∥MH,
∴△CON∽△CHM,
∴,即,
∴ON=1.
故选C.
【点睛】
本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.
3、C
【解析】
解:∵OM=60海里,ON=80海里,MN=100海里,
∴OM2+ON2=MN2,
∴∠MON=90°,
∵∠EOM=20°,
∴∠NOF=180°﹣20°﹣90°=70°.
故选C.
【点睛】
本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键.
4、A
【解析】
根据位似的性质得△ABC∽△A′B′C′,再根据相似三角形的性质进行求解即可得.
【详解】
由位似变换的性质可知,A′B′∥AB,A′C′∥AC,
∴△A′B′C′∽△ABC,
∵△A'B'C'与△ABC的面积的比4:9,
∴△A'B'C'与△ABC的相似比为2:3,
∴ ,
故选A.
【点睛】
本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.
5、C
【解析】
试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.
试题解析:连接AC,如图:
根据勾股定理可以得到:AC=BC=,AB=.
∵()1+()1=()1.
∴AC1+BC1=AB1.
∴△ABC是等腰直角三角形.
∴∠ABC=45°.
故选C.
考点:勾股定理.
6、A
【解析】
试题分析:原方程变形为:x(x-1)=0
x1=0,x1=1.
故选A.
考点:解一元二次方程-因式分解法.
7、C
【解析】
【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D为BC中点,不是角平分线,图3中根据作图痕迹可通过判断三角形全等推导得出AD是角平分线.
【详解】图1中,根据作图痕迹可知AD是角平分线;
图2中,根据作图痕迹可知作的是BC的垂直平分线,则D为BC边的中点,因此AD不是角平分线;
图3:由作图方法可知AM=AE,AN=AF,∠BAC为公共角,∴△AMN≌△AEF,
∴∠3=∠4,
∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,
∴DM=DE,
又∵AD是公共边,∴△ADM≌△ADE,
∴∠1=∠2,即AD平分∠BAC,
故选C.
【点睛】本题考查了尺规作图,三角形全等的判定与性质等,熟知角平分的尺规作图方法、全等三角形的判定与性质是解题的关键.
8、D
【解析】
试题分析:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,
30出现了3次,出现的次数最多,则众数是30;
故选D.
考点:众数;算术平均数.
9、D
【解析】
试题分析:①如图,∵抛物线开口方向向下,∴a<1.
∵对称轴x,∴<1.∴ab>1.故①正确.
②如图,当x=1时,y<1,即a+b+c<1.故②正确.
③如图,当x=﹣1时,y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正确.
④如图,当x=﹣1时,y>1,即a﹣b+c>1,
∵抛物线与y轴交于正半轴,∴c>1.
∵b<1,∴c﹣b>1.
∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正确.
⑤如图,对称轴,则.故⑤正确.
综上所述,正确的结论是①②③④⑤,共5个.故选D.
10、B
【解析】
根据二次根式的加减法则,以及二次根式的性质逐项判断即可.
【详解】
解:∵=2,∴选项A不正确;
∵=2,∴选项B正确;
∵3﹣=2,∴选项C不正确;
∵+=3≠,∴选项D不正确.
故选B.
【点睛】
本题主要考查了二次根式的加减法,以及二次根式的性质和化简,要熟练掌握,解答此题的关键是要明确:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、x(y-1)2
【解析】
分析:先提公因式x,再用完全平方公式把继续分解.
详解:
=x()
=x()2.
故答案为x()2.
点睛:本题考查了因式分解,有公因式先提公因式,然后再用公式法继续分解,因式分解必须分解到每个因式都不能再分解为止.
12、
【解析】
∵点A是反比例函数的图象上的一个动点,设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,
∴AC=n,OC=﹣m,∴∠ACO=∠ADO=90°,
∵∠AOB=90°,∴∠CAO+∠AOC=∠AOC+∠BOD=90°,∴∠CAO=∠BOD,
在△ACO与△ODB中,∵∠ACO=∠ODB,∠CAO=∠BOD,AO=BO,
∴△ACO≌△ODB,∴AC=OD=n,CO=BD=﹣m,∴B(n,﹣m),
∵mn=﹣2,∴n(﹣m)=2,
∴点B所在图象的函数表达式为,
故答案为:.
13、30°
【解析】
分别过A、B作l1的平行线AC和BD,则可知AC∥BD∥l1∥l2,再利用平行线的性质求得答案.
【详解】
如图,分别过A、B作l1的平行线AC和BD,
∵l1∥l2,
∴AC∥BD∥l1∥l2,
∴∠1=∠EAC,∠2=∠FBD,∠CAB+∠DBA=180°,
∵∠EAB+∠FBA=125°+85°=210°,
∴∠EAC+∠CAB+∠DBA+∠FBD=210°,
即∠1+∠2+180°=210°,
∴∠1+∠2=30°,
故答案为30°.
【点睛】
本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.
14、1
【解析】
根据平均数的性质知,要求x1+1,x2+2,x3+3,x4+4、x5+5的平均数,只要把数x1、x2、x3、x4、x5的和表示出即可.
【详解】
∵数据x1,x2,x3,x4,x5的平均数是3,
∴x1+x2+x3+x4+x5=15,
则新数据的平均数为=1,
故答案为:1.
【点睛】
本题考查的是样本平均数的求法.解决本题的关键是用一组数据的平均数表示另一组数据的平均数.
15、1
【解析】
作CE⊥AB于E,根据题意求出AC的长,根据正弦的定义求出CE,根据三角形的外角的性质求出∠B的度数,根据正弦的定义计算即可.
【详解】
作CE⊥AB于E,
1km/h×30分钟=9km,
∴AC=9km,
∵∠CAB=45°,
∴CE=AC•sin45°=9km,
∵灯塔B在它的南偏东15°方向,
∴∠NCB=75°,∠CAB=45°,
∴∠B=30°,
∴BC===1km,
故答案为:1.
【点睛】
本题考查的是解直角三角形的应用-方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键.
16、8π.
【解析】
试题分析: 因为AB为切线,P为切点,
劣弧AB所对圆心角
考点: 勾股定理;垂径定理;弧长公式.
三、解答题(共8题,共72分)
17、(1)300人(2)b=0.15,c=0.2;(3)
【解析】
分析:(1)利用合格的人数除以该组频率进而得出该校初四学生总数;
(2)利用(1)中所求,结合频数÷总数=频率,进而求出答案;
(3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.
详解:(1)由题意可得:该校初三学生共有:105÷0.35=300(人),
答:该校初三学生共有300人;
(2)由(1)得:a=300×0.3=90(人),
b==0.15,
c==0.2;
如图所示:
(3)画树形图得:
∵一共有12种情况,抽取到甲和乙的有2种,
∴P(抽到甲和乙)==.
点睛:此题主要考查了树状图法求概率以及条形统计图的应用,根据题意利用树状图得出所有情况是解题关键.
18、(1)图形见解析;(2)1;(3)1.
【解析】
(1)由A的人数及其所占百分比求得总人数,总人数减去其它类别人数求得B的人数即可补全图形;
(2)根据众数的定义求解可得;
(3)用总人数乘以样本中D和E人数占总人数的比例即可得.
【详解】
解:(1)∵被调查的总人数为20÷20%=100(人),
则辅导1个学科(B类别)的人数为100﹣(20+30+10+5)=35(人),
补全图形如下:
(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是1个学科,
故答案为1;
(3)估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有2000× =1(人),
故答案为1.
【点睛】
此题主要考查了条形统计图的应用以及扇形统计图应用、利用样本估计总体等知识,利用图形得出正确信息求出样本容量是解题关键.
19、这栋楼的高度BC是米.
【解析】
试题分析:在直角三角形ADB中和直角三角形ACD中,根据锐角三角函数中的正切可以分别求得BD和CD的长,从而可以求得BC的长.
试题解析:
解:∵°,°,°,AD=100,
∴在Rt中,,
在Rt中,.
∴.
点睛:本题考查解直角三角形的应用-仰角俯角问题,解答此类问题的关键是明确已知边、已知角和未知边之间的三角函数关系.
20、(1)①110°②DE=EF;(1)①90°②AE1+DB1=DE1
【解析】
试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=110°;
②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;
(1)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;
②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE1+AF1=EF1,即可得出结论.
试题解析:解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.
在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=110°;
②DE=EF.理由如下:
∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;
(1)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;
②AE1+DB1=DE1,理由如下:
∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF中,AE1+AF1=EF1,又∵AF=DB,∴AE1+DB1=DE1.
21、15
【解析】
试题分析:设骑车学生的速度为,利用时间关系列方程解应用题,一定要检验.
试题解析:
解:设骑车学生的速度为,由题意得
,
解得 .
经检验是原方程的解.
答: 骑车学生的速度为15.
22、(1)68 ;(2)4倍;(3)4x,猜想正确,见解析;(4)M的值不能等于1,见解析.
【解析】
(1)直接相加即得到答案;
(2)根据(1)猜想a+b+c+d=4x;
(3)用x表示a、b、c、d,相加后即等于4x;
(4)得到方程5x=1,求出的x不符合数表里数的特征,故不能等于1.
【详解】
(1)5+15+19+29=68,
故答案为68;
(2)根据(1)猜想a+b+c+d=4x,
答案为:4倍;
(3)a=x-12,b=x-2,c=x+2,d=x+12,
∴a+b+c+d=x-12+x-2+x+2+x+12=4x,
∴猜想正确;
(4)M=a+b+c+d+x=4x+x=5x,
若M=5x=1,解得:x=404,
但整个数表所有的数都为奇数,故不成立,
∴M的值不能等于1.
【点睛】
本题考查了一元一次方程的应用.当解得方程的解后,要观察是否满足题目和实际要求再进行取舍.
23、 (1)见解析;(2)1
【解析】
分析:(1)根据平行四边形的判定与矩形的判定证明即可;(2)根据矩形的性质和三角函数解答即可.
详解:(1)证明:
∵ CD⊥AB于点D,BE⊥AB于点B,
∴ .
∴ CD∥BE.
又∵ BE=CD,
∴ 四边形CDBE为平行四边形.
又∵,
∴ 四边形CDBE为矩形.
(2)解:∵ 四边形CDBE为矩形,
∴ DE=BC.
∵ 在Rt△ABC中,,CD⊥AB,
可得 .
∵ ,
∴ .
∵ 在Rt△ABC中,,AC=2,,
∴ .
∴ DE=BC=1.
点睛:本题考查了矩形的判定与性质,关键是根据平行四边形的判定与矩形的判定解答.
24、(1)a=,b=2;(2)BC=.
【解析】
试题分析:(1)首先利用反比例函数图象上点的坐标性质得出k的值,再得出A、D点坐标,进而求出a,b的值;
(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),得出tan∠ADF=,tan∠AEC=,进而求出m的值,即可得出答案.
试题解析:(1)∵点B(2,2)在函数y=(x>0)的图象上,
∴k=4,则y=,
∵BD⊥y轴,∴D点的坐标为:(0,2),OD=2,
∵AC⊥x轴,AC=OD,∴AC=3,即A点的纵坐标为:3,
∵点A在y=的图象上,∴A点的坐标为:(,3),
∵一次函数y=ax+b的图象经过点A、D,
∴,
解得:,b=2;
(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),
∵BD∥CE,且BC∥DE,
∴四边形BCED为平行四边形,
∴CE=BD=2,
∵BD∥CE,∴∠ADF=∠AEC,
∴在Rt△AFD中,tan∠ADF=,
在Rt△ACE中,tan∠AEC=,
∴=,
解得:m=1,
∴C点的坐标为:(1,0),则BC=.
考点:反比例函数与一次函数的交点问题.
江苏省扬州市江都区国际校2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份江苏省扬州市江都区国际校2021-2022学年中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了一、单选题,下列运算正确的是等内容,欢迎下载使用。
2022年江苏省扬州市江都区实验中考试题猜想数学试卷含解析: 这是一份2022年江苏省扬州市江都区实验中考试题猜想数学试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,如果将直线l1,下列说法不正确的是等内容,欢迎下载使用。
2021-2022学年江苏省扬州市江都区实验中学中考二模数学试题含解析: 这是一份2021-2022学年江苏省扬州市江都区实验中学中考二模数学试题含解析,共25页。