内蒙古呼伦贝尔市名校2021-2022学年中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.某市今年1月份某一天的最高气温是3℃,最低气温是—4℃,那么这一天的最高气温比最低气温高
A.—7℃ B.7℃ C.—1℃ D.1℃
2.下列计算正确的是( )
A.﹣2x﹣2y3•2x3y=﹣4x﹣6y3 B.(﹣2a2)3=﹣6a6
C.(2a+1)(2a﹣1)=2a2﹣1 D.35x3y2÷5x2y=7xy
3.不等式3x<2(x+2)的解是( )
A.x>2 B.x<2 C.x>4 D.x<4
4.下列四个几何体中,主视图与左视图相同的几何体有( )
A.1个 B.2个 C.3个 D.4个
5.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是( )
A.① B.② C.③ D.④
6.如图,平面直角坐标系xOy中,四边形OABC的边OA在x轴正半轴上,BC∥x轴,∠OAB=90°,点C(3,2),连接OC.以OC为对称轴将OA翻折到OA′,反比例函数y=的图象恰好经过点A′、B,则k的值是( )
A.9 B. C. D.3
7.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是( )
A.的长 B.的长 C.的长 D.的长
8.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )
A. B. C. D.
9.如图所示的几何体的主视图是( )
A. B. C. D.
10.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为( )
A.8 B.10 C.13 D.14
二、填空题(共7小题,每小题3分,满分21分)
11.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______.
12.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .
13.如果将抛物线平移,使平移后的抛物线顶点坐标为,那么所得新抛物线的表达式是__________.
14.若式子在实数范围内有意义,则x的取值范围是 .
15.方程组的解一定是方程_____与_____的公共解.
16.计算:(π﹣3)0﹣2-1=_____.
17.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=的图象上,则菱形的面积为_____.
三、解答题(共7小题,满分69分)
18.(10分)已知,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和C(0,3).
(1)求抛物线的解析式;
(2)设点M在抛物线的对称轴上,当△MAC是以AC为直角边的直角三角形时,求点M的坐标.
19.(5分)如图,已知⊙O,请用尺规做⊙O的内接正四边形ABCD,(保留作图痕迹,不写做法)
20.(8分)在平面直角坐标系中,一次函数的图象与反比例函数(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).
求一次函数和反比例函数解析式.若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求△ABF的面积.根据图象,直接写出不等式的解集.
21.(10分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.
请你根据以上数据,计算舍利塔的高度AB.
22.(10分)先化简,再求值:﹣1,其中a=2sin60°﹣tan45°,b=1.
23.(12分)如图,Rt△ABC的两直角边AC边长为4,BC边长为3,它的内切圆为⊙O,⊙O与边AB、BC、AC分别相切于点D、E、F,延长CO交斜边AB于点G.
(1)求⊙O的半径长;
(2)求线段DG的长.
24.(14分) “低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了两幅统计图:
(1)样本中的总人数为 人;扇形统计十图中“骑自行车”所在扇形的圆心角为 度;
(2)补全条形统计图;
(3)该单位共有1000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
求最高气温比最低气温高多少度,即是求最高气温与最低气温的差,这个实际问题可转化为减法运算,列算式计算即可.
【详解】
3-(-4)=3+4=7℃.
故选B.
2、D
【解析】
A.根据同底数幂乘法法则判断;B.根据积的乘方法则判断即可;C.根据平方差公式计算并判断;D.根据同底数幂除法法则判断.
【详解】
A.-2x-2y32x3y=-4xy4,故本选项错误;
B. (−2a2)3=−8a6,故本项错误;
C. (2a+1)(2a−1)=4a2−1,故本项错误;
D.35x3y2÷5x2y=7xy,故本选项正确.
故答案选D.
【点睛】
本题考查了同底数幂的乘除法法则、积的乘方法则与平方差公式,解题的关键是熟练的掌握同底数幂的乘除法法则、积的乘方法则与平方差公式.
3、D
【解析】
不等式先展开再移项即可解答.
【详解】
解:不等式3x<2(x+2),
展开得:3x<2x+4,
移项得:3x-2x<4,
解之得:x<4.
故答案选D.
【点睛】
本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤.
4、D
【解析】
解:①正方体的主视图与左视图都是正方形;
②球的主视图与左视图都是圆;
③圆锥主视图与左视图都是三角形;
④圆柱的主视图和左视图都是长方形;
故选D.
5、B
【解析】
根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。因此,通过观察发现,当涂黑②时,所形成的图形关于点A中心对称。故选B。
6、C
【解析】
设B(,2),由翻折知OC垂直平分AA′,A′G=2EF,AG=2AF,由勾股定理得OC=,根据相似三角形或锐角三角函数可求得A′(,),根据反比例函数性质k=xy建立方程求k.
【详解】
如图,过点C作CD⊥x轴于D,过点A′作A′G⊥x轴于G,连接AA′交射线OC于E,过E作EF⊥x轴于F,
设B(,2),
在Rt△OCD中,OD=3,CD=2,∠ODC=90°,
∴OC==,
由翻折得,AA′⊥OC,A′E=AE,
∴sin∠COD=,
∴AE=,
∵∠OAE+∠AOE=90°,∠OCD+∠AOE=90°,
∴∠OAE=∠OCD,
∴sin∠OAE==sin∠OCD,
∴EF=,
∵cos∠OAE==cos∠OCD,
∴,
∵EF⊥x轴,A′G⊥x轴,
∴EF∥A′G,
∴,
∴,,
∴,
∴A′(,),
∴,
∵k≠0,
∴,
故选C.
【点睛】
本题是反比例函数综合题,常作为考试题中选择题压轴题,考查了反比例函数点的坐标特征、相似三角形、翻折等,解题关键是通过设点B的坐标,表示出点A′的坐标.
7、B
【解析】
【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB的长,进而求得AD的长,即可发现结论.
【解答】用求根公式求得:
∵
∴
∴
AD的长就是方程的正根.
故选B.
【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键.
8、C
【解析】
分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.
详解:从左边看竖直叠放2个正方形.
故选:C.
点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.
9、C
【解析】
主视图就是从正面看,看列数和每一列的个数.
【详解】
解:由图可知,主视图如下
故选C.
【点睛】
考核知识点:组合体的三视图.
10、C
【解析】
根据三角形的面积公式以及切线长定理即可求出答案.
【详解】
连接PE、PF、PG,AP,
由题意可知:∠PEC=∠PFA=PGA=90°,
∴S△PBC=BC•PE=×4×2=4,
∴由切线长定理可知:S△PFC+S△PBG=S△PBC=4,
∴S四边形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,
∴由切线长定理可知:S△APG=S四边形AFPG=,
∴=×AG•PG,
∴AG=,
由切线长定理可知:CE=CF,BE=BG,
∴△ABC的周长为AC+AB+CE+BE
=AC+AB+CF+BG
=AF+AG
=2AG
=13,
故选C.
【点睛】
本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.
二、填空题(共7小题,每小题3分,满分21分)
11、等
【解析】
根据二次函数的图象最高点是坐标原点,可以得到a<0,b=0,c=0,所以解析式满足a<0,b=0,c=0即可.
【详解】
解:根据二次函数的图象最高点是坐标原点,可以得到a<0,b=0,c=0,
例如:.
【点睛】
此题是开放性试题,考查函数图象及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义.
12、5
【解析】
∵多边形的每个外角都等于72°,
∵多边形的外角和为360°,
∴360°÷72°=5,
∴这个多边形的边数为5.
故答案为5.
13、.
【解析】
平移不改变抛物线的开口方向与开口大小,即解析式的二次项系数不变,根据抛物线的顶点式可求抛物线解析式.
【详解】
∵原抛物线解析式为y=1x1,顶点坐标是(0,0),平移后抛物线顶点坐标为(1,1),∴平移后的抛物线的表达式为:y=1(x﹣1)1+1.
故答案为:y=1(x﹣1)1+1.
【点睛】
本题考查了抛物线的平移与解析式变化的关系.关键是明确抛物线的平移实质上是顶点的平移,能用顶点式表示平移后的抛物线解析式.
14、.
【解析】
根据二次根式被开方数必须是非负数的条件,
要使在实数范围内有意义,必须.
故答案为
15、5x﹣3y=8 3x+8y=9
【解析】
方程组的解一定是方程5x﹣3y=8与3x+8y=9的公共解.
故答案为5x﹣3y=8;3x+8y=9.
16、
【解析】
分别利用零指数幂a0=1(a≠0),负指数幂a-p=(a≠0)化简计算即可.
【详解】
解:(π﹣3)0﹣2-1=1-=.
故答案为:.
【点睛】
本题考查了零指数幂和负整数指数幂的运算,掌握运算法则是解题关键.
17、1
【解析】
连接AC交OB于D,由菱形的性质可知.根据反比例函数中k的几何意义,得出△AOD的面积=1,从而求出菱形OABC的面积=△AOD的面积的4倍.
【详解】
连接AC交OB于D.
四边形OABC是菱形,
.
点A在反比例函数的图象上,
的面积,
菱形OABC的面积=的面积=1.
【点睛】
本题考查的知识点是菱形的性质及反比例函数的比例系数k的几何意义.解题关键是反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即.
三、解答题(共7小题,满分69分)
18、(1)y=﹣x2+2x+1;(2)当△MAC是直角三角形时,点M的坐标为(1,)或(1,﹣).
【解析】
(1)由点A、C的坐标,利用待定系数法即可求出抛物线的解析式;
(2)设点M的坐标为(1,m),则CM=,AC=,AM=,分∠ACM=90°和∠CAM=90°两种情况,利用勾股定理可得出关于m的方程,解之可得出m的值,进而即可得出点M的坐标.
【详解】
(1)将A(﹣1,0)、C(0,1)代入y=﹣x2+bx+c中,
得:,
解得:,
∴抛物线的解析式为y=﹣x2+2x+1.
(2)∵y=﹣x2+2x+1=﹣(x﹣1)2+4,
设点M的坐标为(1,m),
则CM=,AC==,AM=.
分两种情况考虑:
①当∠ACM=90°时,有AM2=AC2+CM2,即4+m2=10+1+(m﹣1)2,
解得:m=,
∴点M的坐标为(1,);
②当∠CAM=90°时,有CM2=AM2+AC2,即1+(m﹣1)2=4+m2+10,
解得:m=﹣,
∴点M的坐标为(1,﹣).
综上所述:当△MAC是直角三角形时,点M的坐标为(1,)或(1,﹣).
【点睛】
本题考查二次函数的综合问题,解题的关键是掌握待定系数法求二次函数解析式、二次函数图象的点的坐标特征以及勾股定理等知识点.
19、见解析
【解析】
根据内接正四边形的作图方法画出图,保留作图痕迹即可.
【详解】
任作一条直径,再作该直径的中垂线,顺次连接圆上的四点即可.
【点睛】
此题重点考察学生对圆内接正四边形作图的应用,掌握圆内接正四边形的作图方法是解题的关键.
20、(1)y=﹣x+,y=;(2)12;(3) x<﹣2或0<x<4.
【解析】
(1)将点A坐标代入解析式,可求解析式;(2)一次函数和反比例函数解析式组成方程组,求出点B坐标,即可求△ABF的面积;(3)直接根据图象可得.
【详解】
(1)∵一次函数y=﹣x+b的图象与反比例函数y= (k≠0)图象交于A(﹣3,2)、B两点,
∴3=﹣×(﹣2)+b,k=﹣2×3=﹣6
∴b=,k=﹣6
∴一次函数解析式y=﹣,反比例函数解析式y=.
(2)根据题意得: ,
解得: ,
∴S△ABF=×4×(4+2)=12
(3)由图象可得:x<﹣2或0<x<4
【点睛】
本题考查了反比例函数图象与一次函数图象的交点问题,待定系数法求解析式,熟练运用函数图象解决问题是本题的关键.
21、55米
【解析】
由题意可知△EDC∽△EBA,△FHC∽△FBA,根据相似三角形的性质可得,又DC=HG,可得,代入数据即可求得AC=106米,再由即可求得AB=55米.
【详解】
∵△EDC∽△EBA,△FHC∽△FBA,
,
,
,
即,
∴AC=106米,
又 ,
∴,
∴AB=55米.
答:舍利塔的高度AB为55米.
【点睛】
本题考查相似三角形的判定和性质的应用,解题的关键是灵活运用所学知识解决问题,利用相似三角形的性质建立方程解决问题.
22、
【解析】
对待求式的分子、分母进行因式分解,并将除法化为乘法可得×-1,通过约分即可得到化简结果;先利用特殊角的三角函数值求出a的值,再将a、b的值代入化简结果中计算即可解答本题.
【详解】
原式=×-1
=-1
=
=,
当a═2sin60°﹣tan45°=2×﹣1=﹣1,b=1时,
原式=.
【点睛】
本题考查了分式的化简求值,解题的关键是熟练的掌握分式的化简求值运算法则.
23、 (1) 1;(2)
【解析】
(1)由勾股定理求AB,设⊙O的半径为r,则r=(AC+BC-AB)求解;
(2)过G作GP⊥AC,垂足为P,根据CG平分直角∠ACB可知△PCG为等腰直角三角形,设PG=PC=x,则CG=x,由(1)可知CO=r=,由Rt△AGP∽Rt△ABC,利用相似比求x,由OG=CG-CO求OG,在Rt△ODG中,由勾股定理求DG.
试题解析:(1)在Rt△ABC中,由勾股定理得AB==5,
∴☉O的半径r=(AC+BC-AB)=(4+3-5)=1;
(2)过G作GP⊥AC,垂足为P,设GP=x,
由∠ACB=90°,CG平分∠ACB,得∠GCP=45°,
∴GP=PC=x,
∵Rt△AGP∽Rt△ABC,
∴=,解得x=,
即GP=,CG=,
∴OG=CG-CO=-=,
在Rt△ODG中,DG==.
24、 (1) 80、72;(2) 16人;(3) 50人
【解析】
(1) 用步行人数除以其所占的百分比即可得到样本总人数:810%=80(人);用总人数乘以开私家车的所占百分比即可求出m,即 m=8025%=20;用3600乘以骑自行车所占的百分比即可求出其所在扇形的圆心角:360(1-10%-25%-45%)=.
(2) 根据扇形统计图算出骑自行车的所占百分比, 再用总人数乘以该百分比即可求出骑自行车的人数, 补全条形图即可.
(3) 依题意设原来开私家车的人中有x人改为骑自行车, 用x分别表示改变出行方式后的骑自行车和开私家车的人数, 根据题意列出一元一次不等式, 解不等式即可.
【详解】
解:(1)样本中的总人数为8÷10%=80人,
∵骑自行车的百分比为1﹣(10%+25%+45%)=20%,
∴扇形统计十图中“骑自行车”所在扇形的圆心角为360°×20%=72°
(2)骑自行车的人数为80×20%=16人,
补全图形如下:
(3)设原来开私家车的人中有x人改骑自行车,
由题意,得:1000×(1﹣10%﹣25%﹣45%)+x≥1000×25%﹣x,
解得:x≥50,
∴原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.
【点睛】
本题主要考查统计图表和一元一次不等式的应用。
内蒙古自治区呼伦贝尔市2021-2022学年中考联考数学试题含解析: 这是一份内蒙古自治区呼伦贝尔市2021-2022学年中考联考数学试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,股市有风险,投资需谨慎,计算﹣2+3的结果是,若二元一次方程组的解为则的值为等内容,欢迎下载使用。
2021-2022学年内蒙古自治区呼伦贝尔市、兴安盟达标名校中考数学适应性模拟试题含解析: 这是一份2021-2022学年内蒙古自治区呼伦贝尔市、兴安盟达标名校中考数学适应性模拟试题含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法正确的是,在同一平面内,下列说法等内容,欢迎下载使用。
2021-2022学年江西省抚州市名校中考联考数学试卷含解析: 这是一份2021-2022学年江西省抚州市名校中考联考数学试卷含解析,共19页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。