终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    四川省内江市东兴区市级名校2022年十校联考最后数学试题含解析

    立即下载
    加入资料篮
    四川省内江市东兴区市级名校2022年十校联考最后数学试题含解析第1页
    四川省内江市东兴区市级名校2022年十校联考最后数学试题含解析第2页
    四川省内江市东兴区市级名校2022年十校联考最后数学试题含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省内江市东兴区市级名校2022年十校联考最后数学试题含解析

    展开

    这是一份四川省内江市东兴区市级名校2022年十校联考最后数学试题含解析,共24页。试卷主要包含了不等式组的解集在数轴上表示为等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,在圆O中,直径AB平分弦CD于点E,且CD=4,连接AC,OD,若∠A与∠DOB互余,则EB的长是( )

    A.2 B.4 C. D.2
    2.点是一次函数图象上一点,若点在第一象限,则的取值范围是( ).
    A. B. C. D.
    3.随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是(  )

    A.①的收入去年和前年相同
    B.③的收入所占比例前年的比去年的大
    C.去年②的收入为2.8万
    D.前年年收入不止①②③三种农作物的收入
    4.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是(  )

    A. B. C. D.
    5.在直角坐标平面内,已知点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,那么r的取值范围为( )
    A. B. C. D.
    6.如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为  

    A.8 B. C.4 D.
    7.不等式组的解集在数轴上表示为(  )
    A. B. C. D.
    8.若代数式在实数范围内有意义,则x的取值范围是( )
    A. B. C. D.
    9.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是(  )

    A.70° B.44° C.34° D.24°
    10.在△ABC中,∠C=90°,tanA=,△ABC的周长为60,那么△ABC的面积为(  )
    A.60 B.30 C.240 D.120
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在△ABC中,AB=AC,D、E、F分别为AB、BC、AC的中点,则下列结论:①△ADF≌△FEC;②四边形ADEF为菱形;③.其中正确的结论是____________.(填写所有正确结论的序号)

    12.阅读以下作图过程:
    第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB为直径作半圆(如图);
    第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);
    第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M.
    请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为______.

    13.已知、为两个连续的整数,且,则=________.
    14.一个扇形的面积是πcm,半径是3cm,则此扇形的弧长是_____.
    15.已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是_____.
    16.一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为____.
    三、解答题(共8题,共72分)
    17.(8分)如图,以△ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接AE、DE.
    求证:DE是⊙O的切线;设△CDE的面积为 S1,四边形ABED的面积为 S1.若 S1=5S1,求tan∠BAC的值;在(1)的条件下,若AE=3,求⊙O的半径长.
    18.(8分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.
    (1)用含x的代数式表示线段CF的长;
    (2)如果把△CAE的周长记作C△CAE,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;
    (3)当∠ABE的正切值是 时,求AB的长.

    19.(8分)如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(在轴上),运动员乙在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
    求足球开始飞出到第一次落地时,该抛物线的表达式.足球第一次落地点距守门员多少米?(取)运动员乙要抢到第二个落点,他应再向前跑多少米?
    20.(8分)如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?

    21.(8分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地要走多少千米?开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)

    22.(10分)如图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数的图象上,将这两点分别记为A,B,另一点记为C,
    (1)求出的值;
    (2)求直线AB对应的一次函数的表达式;
    (3)设点C关于直线AB的对称点为D,P是轴上的一个动点,直接写出PC+PD的最小值(不必说明理由).

    23.(12分)如图①,AB是⊙O的直径,CD为弦,且AB⊥CD于E,点M为上一动点(不包括A,B两点),射线AM与射线EC交于点F.
    (1)如图②,当F在EC的延长线上时,求证:∠AMD=∠FMC.
    (2)已知,BE=2,CD=1.
    ①求⊙O的半径;
    ②若△CMF为等腰三角形,求AM的长(结果保留根号).

    24.如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.
    求证:DP是⊙O的切线;若⊙O的半径为3cm,求图中阴影部分的面积.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    连接CO,由直径AB平分弦CD及垂径定理知∠COB=∠DOB,则∠A与∠COB互余,由圆周角定理知∠A=30°,∠COE=60°,则∠OCE=30°,设OE=x,则CO=2x,利用勾股定理即可求出x,再求出BE即可.
    【详解】
    连接CO,∵AB平分CD,
    ∴∠COB=∠DOB,AB⊥CD,CE=DE=2
    ∵∠A与∠DOB互余,
    ∴∠A+∠COB=90°,
    又∠COB=2∠A,
    ∴∠A=30°,∠COE=60°,
    ∴∠OCE=30°,
    设OE=x,则CO=2x,
    ∴CO2=OE2+CE2
    即(2x)2=x2+(2)2
    解得x=2,
    ∴BO=CO=4,
    ∴BE=CO-OE=2.
    故选D.

    【点睛】
    此题主要考查圆内的综合问题,解题的关键是熟知垂径定理、圆周角定理及勾股定理.
    2、B
    【解析】
    试题解析:把点代入一次函数得,


    ∵点在第一象限上,
    ∴,可得,
    因此,即,
    故选B.
    3、C
    【解析】
    A、前年①的收入为60000×=19500,去年①的收入为80000×=26000,此选项错误;
    B、前年③的收入所占比例为×100%=30%,去年③的收入所占比例为×100%=32.5%,此选项错误;
    C、去年②的收入为80000×=28000=2.8(万元),此选项正确;
    D、前年年收入即为①②③三种农作物的收入,此选项错误,
    故选C.
    【点睛】
    本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,并且通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.
    4、B
    【解析】
    根据矩形的性质得到,CB∥x轴,AB∥y轴,于是得到D、E坐标,根据勾股定理得到ED,连接BB′,交ED于F,过B′作B′G⊥BC于G,根据轴对称的性质得到BF=B′F,BB′⊥ED求得BB′,设EG=x,根据勾股定理即可得到结论.
    【详解】
    解:∵矩形OABC,

    ∴CB∥x轴,AB∥y轴.
    ∵点B坐标为(6,1),
    ∴D的横坐标为6,E的纵坐标为1.
    ∵D,E在反比例函数的图象上,
    ∴D(6,1),E(,1),
    ∴BE=6﹣=,BD=1﹣1=3,
    ∴ED==.连接BB′,交ED于F,过B′作B′G⊥BC于G.
    ∵B,B′关于ED对称,
    ∴BF=B′F,BB′⊥ED,
    ∴BF•ED=BE•BD,即BF=3×,
    ∴BF=,
    ∴BB′=.
    设EG=x,则BG=﹣x.
    ∵BB′2﹣BG2=B′G2=EB′2﹣GE2,
    ∴,
    ∴x=,
    ∴EG=,
    ∴CG=,
    ∴B′G=,
    ∴B′(,﹣),
    ∴k=.
    故选B.
    【点睛】
    本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键.
    5、D
    【解析】
    先求出点M到x轴、y轴的距离,再根据直线和圆的位置关系得出即可.
    【详解】
    解:∵点M的坐标是(4,3),
    ∴点M到x轴的距离是3,到y轴的距离是4,
    ∵点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,
    ∴r的取值范围是3<r<4,
    故选:D.
    【点睛】
    本题考查点的坐标和直线与圆的位置关系,能熟记直线与圆的位置关系的内容是解此题的关键.
    6、A
    【解析】
    【分析】设,,根据反比例函数图象上点的坐标特征得出,根据三角形的面积公式得到,即可求出.
    【详解】轴,
    ,B两点纵坐标相同,
    设,,则,,


    故选A.
    【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.
    7、A
    【解析】
    根据不等式组的解集在数轴上表示的方法即可解答.
    【详解】
    ∵x≥﹣2,故以﹣2为实心端点向右画,x<1,故以1为空心端点向左画.
    故选A.
    【点睛】
    本题考查了不等式组解集的在数轴上的表示方法,不等式的解集在数轴上表示方法为:>、≥向右画,<、≤向左画, “≤”、“≥”要用实心圆点表示;“”要用空心圆点表示.
    8、D
    【解析】
    试题解析:要使分式有意义,
    则1-x≠0,
    解得:x≠1.
    故选D.
    9、C
    【解析】
    易得△ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC
    【详解】
    ∵AB=BD,∠B=40°,
    ∴∠ADB=70°,
    ∵∠C=36°,
    ∴∠DAC=∠ADB﹣∠C=34°.
    故选C.
    【点睛】
    本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.
    10、D
    【解析】
    由tanA的值,利用锐角三角函数定义设出BC与AC,进而利用勾股定理表示出AB,由周长为60求出x的值,确定出两直角边,即可求出三角形面积.
    【详解】
    如图所示,

    由tanA=,
    设BC=12x,AC=5x,根据勾股定理得:AB=13x,
    由题意得:12x+5x+13x=60,
    解得:x=2,
    ∴BC=24,AC=10,
    则△ABC面积为120,
    故选D.
    【点睛】
    此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握勾股定理是解本题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、①②③
    【解析】
    ①根据三角形的中位线定理可得出AD=FE、AF=FC、DF=EC,进而可证出△ADF≌△FEC(SSS),结论①正确;
    ②根据三角形中位线定理可得出EF∥AB、EF=AD,进而可证出四边形ADEF为平行四边形,由AB=AC结合D、F分别为AB、AC的中点可得出AD=AF,进而可得出四边形ADEF为菱形,结论②正确;
    ③根据三角形中位线定理可得出DF∥BC、DF=BC,进而可得出△ADF∽△ABC,再利用相似三角形的性质可得出,结论③正确.此题得解.
    【详解】
    解:①∵D、E、F分别为AB、BC、AC的中点,
    ∴DE、DF、EF为△ABC的中位线,
    ∴AD=AB=FE,AF=AC=FC,DF=BC=EC.
    在△ADF和△FEC中,

    ∴△ADF≌△FEC(SSS),结论①正确;
    ②∵E、F分别为BC、AC的中点,
    ∴EF为△ABC的中位线,
    ∴EF∥AB,EF=AB=AD,
    ∴四边形ADEF为平行四边形.
    ∵AB=AC,D、F分别为AB、AC的中点,
    ∴AD=AF,
    ∴四边形ADEF为菱形,结论②正确;
    ③∵D、F分别为AB、AC的中点,
    ∴DF为△ABC的中位线,
    ∴DF∥BC,DF=BC,
    ∴△ADF∽△ABC,
    ∴,结论③正确.
    故答案为①②③.
    【点睛】
    本题考查了菱形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质以及三角形中位线定理,逐一分析三条结论的正误是解题的关键.
    12、作图见解析,
    【解析】
    解:如图,点M即为所求.连接AC、BC.由题意知:AB=4,BC=1.∵AB为圆的直径,∴∠ACB=90°,则AM=AC===,∴点M表示的数为.故答案为.

    点睛:本题主要考查作图﹣尺规作图,解题的关键是熟练掌握尺规作图和圆周角定理及勾股定理.
    13、11
    【解析】
    根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.
    【详解】
    ∵a<<b,a、b为两个连续的整数,
    ∴,
    ∴a=5,b=6,
    ∴a+b=11.
    故答案为11.
    【点睛】
    本题考查的是估算无理数的大小,熟练掌握无理数是解题的关键.
    14、
    【解析】
    根据扇形面积公式求解即可
    【详解】
    根据扇形面积公式.
    可得:,

    故答案:.
    【点睛】
    本题主要考查了扇形的面积和弧长之间的关系, 利用扇形弧长和半径代入公式即可求解, 正确理解公式是解题的关键. 注意在求扇形面积时, 要根据条件选择扇形面积公式.
    15、1.1
    【解析】
    【分析】先判断出x,y中至少有一个是1,再用平均数求出x+y=11,即可得出结论.
    【详解】∵一组数据4,x,1,y,7,9的众数为1,
    ∴x,y中至少有一个是1,
    ∵一组数据4,x,1,y,7,9的平均数为6,
    ∴(4+x+1+y+7+9)=6,
    ∴x+y=11,
    ∴x,y中一个是1,另一个是6,
    ∴这组数为4,1,1,6,7,9,
    ∴这组数据的中位数是×(1+6)=1.1,
    故答案为:1.1.
    【点睛】本题考查了众数、平均数、中位数等概念,熟练掌握众数、平均数、中位数的概念、判断出x,y中至少有一个是1是解本题的关键.
    16、2
    【解析】
    试题分析:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,
    2πr=,解得r=2cm.
    考点:圆锥侧面展开扇形与底面圆之间的关系.

    三、解答题(共8题,共72分)
    17、(1)见解析;(1)tan∠BAC=;(3)⊙O的半径=1.
    【解析】
    (1)连接DO,由圆周角定理就可以得出∠ADB=90°,可以得出∠CDB=90°,根据E为BC的中点可以得出DE=BE,就有∠EDB=∠EBD,OD=OB可以得出∠ODB=∠OBD,由等式的性质就可以得出∠ODE=90°就可以得出结论.
    (1)由S1=5 S1可得△ADB的面积是△CDE面积的4倍,可求得AD:CD=1:1,可得.则tan∠BAC的值可求;
    (3)由(1)的关系即可知,在Rt△AEB中,由勾股定理即可求AB的长,从而求⊙O的半径.
    【详解】
    解:(1)连接OD,

    ∴OD=OB
    ∴∠ODB=∠OBD.
    ∵AB是直径,
    ∴∠ADB=90°,
    ∴∠CDB=90°.
    ∵E为BC的中点,
    ∴DE=BE,
    ∴∠EDB=∠EBD,
    ∴∠ODB+∠EDB=∠OBD+∠EBD,
    即∠EDO=∠EBO.
    ∵BC是以AB为直径的⊙O的切线,
    ∴AB⊥BC,
    ∴∠EBO=90°,
    ∴∠ODE=90°,
    ∴DE是⊙O的切线;
    (1)∵S1=5 S1
    ∴S△ADB=1S△CDB

    ∵△BDC∽△ADB

    ∴DB1=AD•DC

    ∴tan∠BAC==.
    (3)∵tan∠BAC=
    ∴,得BC=AB
    ∵E为BC的中点
    ∴BE=AB
    ∵AE=3,
    ∴在Rt△AEB中,由勾股定理得
    ,解得AB=4
    故⊙O的半径R=AB=1.

    【点睛】
    本题考查了圆周角定理的运用,直角三角形的性质的运用,等腰三角形的性质的运用,切线的判定定理的运用,勾股定理的运用,相似三角形的判定和性质,解答时正确添加辅助线是关键.
    18、(1)CF=;(2)y=(0<x<2);(3)AB=2.5.
    【解析】
    试题分析:(1)根据等腰直角三角形的性质,求得∠DAC=∠ACD=45°,进而根据两角对应相等的两三角形相似,可得△CEF∽△CAE,然后根据相似三角形的性质和勾股定理可求解;
    (2)根据相似三角形的判定与性质,由三角形的周长比可求解;
    (3)由(2)中的相似三角形的对应边成比例,可求出AB的关系,然后可由∠ABE的正切值求解.
    试题解析:(1)∵AD=CD.
    ∴∠DAC=∠ACD=45°,
    ∵∠CEB=45°,
    ∴∠DAC=∠CEB,
    ∵∠ECA=∠ECA,
    ∴△CEF∽△CAE,
    ∴,
    在Rt△CDE中,根据勾股定理得,CE= ,
    ∵CA=,
    ∴,
    ∴CF=;
    (2)∵∠CFE=∠BFA,∠CEB=∠CAB,
    ∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,
    ∵∠ABF=180°﹣∠CAB﹣∠AFB,
    ∴∠ECA=∠ABF,
    ∵∠CAE=∠ABF=45°,
    ∴△CEA∽△BFA,
    ∴(0<x<2),
    (3)由(2)知,△CEA∽△BFA,
    ∴,
    ∴,
    ∴AB=x+2,
    ∵∠ABE的正切值是,
    ∴tan∠ABE=,
    ∴x=,
    ∴AB=x+2=.
    19、(1)(或)(2)足球第一次落地距守门员约13米.(3)他应再向前跑17米.
    【解析】
    (1)依题意代入x的值可得抛物线的表达式.
    (2)令y=0可求出x的两个值,再按实际情况筛选.
    (3)本题有多种解法.如图可得第二次足球弹出后的距离为CD,相当于将抛物线AEMFC向下平移了2个单位可得解得x的值即可知道CD、BD.
    【详解】
    解:(1)如图,设第一次落地时,
    抛物线的表达式为
    由已知:当时 

    表达式为(或)

    (2)令
    (舍去).
    足球第一次落地距守门员约13米.
    (3)解法一:如图,第二次足球弹出后的距离为
    根据题意:(即相当于将抛物线向下平移了2个单位)
    解得

    (米).
    答:他应再向前跑17米.
    20、20千米
    【解析】
    由勾股定理两直角边的平方和等于斜边的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜边相等两次利用勾股定理得到AD2+AE2=BE2+BC2,设AE为x,则BE=10﹣x,将DA=8,CB=2代入关系式即可求得.
    【详解】
    解:设基地E应建在离A站x千米的地方.
    则BE=(50﹣x)千米
    在Rt△ADE中,根据勾股定理得:AD2+AE2=DE2
    ∴302+x2=DE2
    在Rt△CBE中,根据勾股定理得:CB2+BE2=CE2
    ∴202+(50﹣x)2=CE2
    又∵C、D两村到E点的距离相等.
    ∴DE=CE
    ∴DE2=CE2
    ∴302+x2=202+(50﹣x)2
    解得x=20
    ∴基地E应建在离A站20千米的地方.
    考点:勾股定理的应用.
    21、 (1)开通隧道前,汽车从A地到B地要走(80+40)千米;(2)汽车从A地到B地比原来少走的路程为[40+40(﹣)]千米.
    【解析】
    (1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;
    (2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.
    【详解】
    (1)过点C作AB的垂线CD,垂足为D,
    ∵AB⊥CD,sin30°=,BC=80千米,
    ∴CD=BC•sin30°=80×=40(千米),
    AC=(千米),
    AC+BC=80+(千米),
    答:开通隧道前,汽车从A地到B地要走(80+)千米;
    (2)∵cos30°=,BC=80(千米),
    ∴BD=BC•cos30°=80×(千米),
    ∵tan45°=,CD=40(千米),
    ∴AD=(千米),
    ∴AB=AD+BD=40+(千米),
    ∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=80+﹣40﹣=40+40(千米).
    答:汽车从A地到B地比原来少走的路程为 [40+40]千米.

    【点睛】
    本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
    22、(2)2;(2)y=x+2;(3).
    【解析】
    (2)确定A、B、C的坐标即可解决问题;
    (2)理由待定系数法即可解决问题;
    (3)作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,此时PC+PD的值最小,最小值=CD′的长.
    【详解】
    解:(2)∵反比例函数y=的图象上的点横坐标与纵坐标的积相同,
    ∴A(2,2),B(-2,-2),C(3,2)
    ∴k=2.
    (2)设直线AB的解析式为y=mx+n,则有,
    解得,
    ∴直线AB的解析式为y=x+2.
    (3)∵C、D关于直线AB对称,
    ∴D(0,4)
    作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,

    此时PC+PD的值最小,最小值=CD′=.
    【点睛】
    本题考查反比例函数图象上的点的特征,一次函数的性质、反比例函数的性质、轴对称最短问题等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用轴对称解决最短问题.
    23、(1)详见解析;(2)2;②1或
    【解析】
    (1)想办法证明∠AMD=∠ADC,∠FMC=∠ADC即可解决问题;
    (2)①在Rt△OCE中,利用勾股定理构建方程即可解决问题;
    ②分两种情形讨论求解即可.
    【详解】
    解:(1)证明:如图②中,连接AC、AD.

    ∵AB⊥CD,
    ∴CE=ED,
    ∴AC=AD,
    ∴∠ACD=∠ADC,
    ∵∠AMD=∠ACD,
    ∴∠AMD=∠ADC,
    ∵∠FMC+∠AMC=110°,∠AMC+∠ADC=110°,
    ∴∠FMC=∠ADC,
    ∴∠FMC=∠ADC,
    ∴∠FMC=∠AMD.
    (2)解:①如图②﹣1中,连接OC.设⊙O的半径为r.

    在Rt△OCE中,∵OC2=OE2+EC2,
    ∴r2=(r﹣2)2+42,
    ∴r=2.
    ②∵∠FMC=∠ACD>∠F,
    ∴只有两种情形:MF=FC,FM=MC.
    如图③中,当FM=FC时,易证明CM∥AD,
    ∴,
    ∴AM=CD=1.

    如图④中,当MC=MF时,连接MO,延长MO交AD于H.

    ∵∠MFC=∠MCF=∠MAD,∠FMC=∠AMD,
    ∴∠ADM=∠MAD,
    ∴MA=MD,
    ∴,
    ∴MH⊥AD,AH=DH,
    在Rt△AED中,AD=,
    ∴AH=,
    ∵tan∠DAE=,
    ∴OH=,
    ∴MH=2+,
    在Rt△AMH中,AM=.
    【点睛】
    本题考查了圆的综合题:熟练掌握与圆有关的性质、圆的内接正方形的性质和旋转的性质;灵活利用全等三角形的性质;会利用面积的和差计算不规则几何图形的面积.
    24、(1)证明见解析;(2).
    【解析】
    (1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可.
    (2)求出OP、DP长,分别求出扇形DOB和△ODP面积,即可求出答案.
    【详解】
    解:(1)证明:连接OD,

    ∵∠ACD=60°,
    ∴由圆周角定理得:∠AOD=2∠ACD=120°.
    ∴∠DOP=180°﹣120°=60°.
    ∵∠APD=30°,
    ∴∠ODP=180°﹣30°﹣60°=90°.
    ∴OD⊥DP.
    ∵OD为半径,
    ∴DP是⊙O切线.
    (2)∵∠ODP=90°,∠P=30°,OD=3cm,
    ∴OP=6cm,由勾股定理得:DP=3cm.
    ∴图中阴影部分的面积

    相关试卷

    2022届浙江省杭州市富阳区市级名校十校联考最后数学试题含解析:

    这是一份2022届浙江省杭州市富阳区市级名校十校联考最后数学试题含解析,共17页。

    2022届四川省内江市东兴区市级名校中考数学猜题卷含解析:

    这是一份2022届四川省内江市东兴区市级名校中考数学猜题卷含解析,共22页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2022届四川省内江市东兴区十校联考最后数学试题含解析:

    这是一份2022届四川省内江市东兴区十校联考最后数学试题含解析,共20页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map