终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年安徽省铜陵市某校初一(下)期中考试数学试卷

    立即下载
    加入资料篮
    2021-2022学年安徽省铜陵市某校初一(下)期中考试数学试卷第1页
    2021-2022学年安徽省铜陵市某校初一(下)期中考试数学试卷第2页
    2021-2022学年安徽省铜陵市某校初一(下)期中考试数学试卷第3页
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年安徽省铜陵市某校初一(下)期中考试数学试卷

    展开

    这是一份2021-2022学年安徽省铜陵市某校初一(下)期中考试数学试卷,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    1. 点5,−3所在的象限是( )
    A.第一象限B.第二象限C.第三象限D.第四象限

    2. 下列各数中,3.14159, −38,−π,25,−17,有理数的个数为( )
    A.5B.4C.3D.2

    3. 点P在第二象限,且点P到x轴的距离是4,点P到y轴的距离是5,则点P的坐标是( )
    A.(−4, 5)B.(4, −5)C.(−5, 4)D.(5, −4)

    4. 下列命题中是真命题的是( )
    A.相等的角是对顶角B.数轴上的点与实数一一对应
    C.同旁内角互补D.无理数就是开方开不尽的数

    5. 已知x没有平方根,且|x|=64,则x的立方根为( )
    A.−4B.4C.−8D.8

    6. 已知三角形ABC顶点坐标分别是A0,5,B−3,−3,C1,0,将三角形ABC平移后顶点A的对应点A1的坐标是4,10,则点B的对应点B1的坐标为( )
    A.1,2B.2,1C.2,7D.7,2

    7. 如图,ABCD为一长条形纸带,AB//CD,将ABCD沿EF折叠,A、D分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为( )

    A.60∘B.65∘C.72∘D.75∘

    8. 如图,直线a⊥b,若以平行于a的直线为x轴,以平行于b的直线为y轴,建立平面直角坐标系,若A−3,2,B2,−3,则坐标系的原点最有可能是( )

    A.O1B.O2 C.O3D.O4

    9. 实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是( )

    A.|a|>|b|B.|b−d|=|b|+|d|
    C.|a−c|=c−aD.|d−1|>|c−a|

    10. 如图,AB//ED,∠CDE=36∘,∠ACD=86∘,则∠BAC的度数是( )

    A.150∘B.140∘C.130∘D.120∘
    二、填空题

    比较大小: −123 ________−3 (填“”)

    将点P2m+3,m−2向上平移2个单位长度得到P′,且P′在x轴上,则点P的坐标是________.

    如图,一个合格的变形管道ABCD,需要CD边与AB边平行,若一个拐角∠ABC=110∘,则另一个拐角∠BCD=________时,这个管道符合要求.


    在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A0,4,点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.

    (1)当点B的横坐标为4时,m的值是________.

    (2)当点B的横坐标为4n(n为正整数)时, m=________(用含n的代数式表示)
    三、解答题

    如图是某市火车站及周围的平面示意图,已知超市的坐标是−2,4,市场的坐标是1,3.

    (1)根据题意,画出相应的平面直角坐标系;

    (2)分别写出体育场、火车站和文化宫的坐标;

    (3)准备在−3,−2处建汽车站,在2,−1处建花坛,请你标出汽车站和花坛的位置.

    已知某正数的两个不同的平方根是3a−14和a−2;b−15的立方根为−3.
    (1)求a,b的值;

    (2)求4a+b的算术平方根.

    已知点P的坐标为a,ba>0,点Q的坐标为c,3,且|a−c|+b−7=0,将线段PQ向右平移a个单位长度,其扫过的面积为20,求a+b+c的值.

    如图,点D,E分别在△ABC的边AB,AC上,连接DC,DE,在CD上取一点F,连接EF,若∠1+∠2=180∘, ∠3=∠B,求证: DE//BC.


    已知平面直角坐标系中有一点Mm−1,2m+3.
    (1)点M在二、四象限的角平分线上,求点M的坐标;

    (2)点N的坐标为1,−3,直线MN//x轴,求点M的坐标.

    已知△ABC在平面直角坐标系中的位置如图所示.

    (1)平移△ABC,使点B平移到对应点B′−3,0,画出平移后的△A′B′C′;

    (2)若点Pa,b是△ABC内部一点,则平移后△A′B′C′内对应点P′的坐标为________.

    (3)求△ABC的面积.

    观察求算术平方根的规律,并利用这个规律解决下列问题:0.0001=0.01,0.01=0.1,1=1, 100=10,10000=100,⋯.
    (1)已知20≈4.47,则2000的值为________.

    (2)已知3.68≈1.918,a≈191.8,求a的值;

    (3)根据上述探究方法,尝试解决问题:已知3n≈1.26,3m≈12.6,用含n的代数式表示m.

    已知a,b都是实数,设点Pa,b,若满足3a=2b+5,则称点P为“新奇点”.
    (1)判断点A3,2是否为“新奇点”,并说明理由;

    (2)若点Mm−1,3m+2是“新奇点”,请判断点M在第几象限,并说明理由.

    如图,点O在直线AB上, ∠BOD与∠COD互补,∠BOC=n∠EOC.

    (1)若∠AOD=24∘, n=3,求∠DOE的度数;

    (2)若DO⊥OE,求n的值;

    (3)若n=4,设∠AOD=α,求∠DOE的度数(用含α的代数式表示).
    参考答案与试题解析
    2021-2022学年安徽省铜陵市某校初一(下)期中考试数学试卷
    一、选择题
    1.
    【答案】
    D
    【考点】
    象限中点的坐标
    【解析】
    此题暂无解析
    【解答】
    解:点(5, −3)横坐标为正,纵坐标为负,故它所在的象限是第四象限.
    故选D.
    2.
    【答案】
    B
    【考点】
    无理数的识别
    【解析】
    此题暂无解析
    【解答】
    B
    3.
    【答案】
    C
    【考点】
    点的坐标
    【解析】
    根据P到x轴的距离可得P的纵坐标的绝对值,根据P到y轴的距离可得P的横坐标的绝对值,根据第二象限的点的符号特点可得点
    P的坐标.
    【解答】
    C
    4.
    【答案】
    B
    【考点】
    命题与定理
    【解析】
    此题暂无解析
    【解答】
    B
    5.
    【答案】
    A
    【考点】
    平方根
    立方根的性质
    【解析】
    根据x没有平方根可得出x为负数,再由|x|=64,可得出x的值,继而可求出其立方根.
    【解答】
    A
    6.
    【答案】
    A
    【考点】
    坐标与图形变化-平移
    【解析】
    此题暂无解析
    【解答】
    A
    7.
    【答案】
    C
    【考点】
    翻折变换(折叠问题)
    平行线的判定与性质
    【解析】
    因为矩形ABCD沿EF折叠后,点A′、B′分别为点A、B对折后的对应点.所以∠BFE=∠EFB′,因为∠1=50∘,∠BFE+∠EFB′+∠1=180∘,所以可求∠BFE的度数,由平行线的性质可得∠AEF的度数.
    【解答】
    解:由折叠的性质,得∠AEF=∠FEA′,
    ∵AB//CD,
    ∴∠AEF=∠1,
    ∵∠1=2∠2,
    设∠2=x,
    则∠AEF=∠1=∠FEA′=2x,
    ∵∠AEF+∠FEA′+∠2=180∘
    ∴2x+2x+x=180∘
    ∴x=36∘.
    ∴∠AEF=2x=72∘,
    故选C.
    8.
    【答案】
    B
    【考点】
    坐标与图形性质
    【解析】
    此题暂无解析
    【解答】
    B
    9.
    【答案】
    D
    【考点】
    在数轴上表示实数
    绝对值
    【解析】
    根据数轴上某个数与原点的距离叫做这个数的绝对值解题即可.
    【解答】
    解:如图所示:
    A项:因为OA>OB,所以|a|>|b|,故A正确;
    B项:|b−d|=OB+OD=|b|+|d|,故B正确;
    C项:|a−c|=|a+(−c)|=−a+c=c−a,故C正确;
    D项:|d−1|=OD−OE=DE,|c−a|=|c+(−a)|=OC+OA,故D错误.
    故选D.
    10.
    【答案】
    C
    【考点】
    平行线的性质
    【解析】
    此题暂无解析
    【解答】
    C
    二、填空题
    【答案】
    >
    【考点】
    实数大小比较
    【解析】
    此题暂无解析
    【解答】
    >
    【答案】
    3,−2
    【考点】
    坐标与图形变化-平移
    【解析】
    此题暂无解析
    【解答】
    3,−2
    【答案】
    110∘
    【考点】
    平行线的性质
    【解析】
    此题暂无解析
    【解答】
    110∘
    【答案】
    3
    6n−3
    【考点】
    点的坐标
    坐标与图形性质
    【解析】
    此题暂无解析
    【解答】
    3
    6n−3
    三、解答题
    【答案】
    解:(1)如图所示;
    (2)体育场的坐标为−4,2,火车站的坐标为−1,1,文化宫的坐标为0,−2;
    (3)汽车站和花坛的位置如图所示.
    【考点】
    网格中点的坐标
    点的坐标
    【解析】
    此题暂无解析
    【解答】
    解:(1)如图所示;
    (2)体育场的坐标为−4,2,火车站的坐标为−1,1,文化宫的坐标为0,−2;
    (3)汽车站和花坛的位置如图所示.
    【答案】
    解:(1)正数的两个不同的平方根是3a−14和a−2,
    ∴ 3a−14+a−2=0 ,解得a=4,
    ∵ b−15的立方根为−3,
    ∴ b−15=−27,解得b=−12;
    (2)将a=4,b=−12代人4a+b得4×4+−12=4,
    ∴ 4a+b的算术平方根是2.
    【考点】
    算术平方根
    立方根的性质
    平方根
    【解析】
    此题暂无解析
    【解答】
    解:(1)正数的两个不同的平方根是3a−14和a−2,
    ∴ 3a−14+a−2=0 ,解得a=4,
    ∵ b−15的立方根为−3,
    ∴ b−15=−27,解得b=−12;
    (2)将a=4,b=−12代人4a+b得4×4+−12=4,
    ∴ 4a+b的算术平方根是2.
    【答案】
    解:∵ |a−c|+b−7=0 ,∴ a=c,b=7,
    ∴ Pa,7,∴ PQ//y轴,∴ PQ=7−3=4,
    ∴ 将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,
    ∴ 4a=20,∴ a=5,∴ c=5,∴ a+b+c=5+7+5=17.
    【考点】
    平移的性质
    非负数的性质:绝对值
    非负数的性质:算术平方根
    【解析】
    此题暂无解析
    【解答】
    解:∵ |a−c|+b−7=0 ,∴ a=c,b=7,
    ∴ Pa,7,∴ PQ//y轴,∴ PQ=7−3=4,
    ∴ 将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,
    ∴ 4a=20,∴ a=5,∴ c=5,∴ a+b+c=5+7+5=17.
    【答案】
    证明:∵ ∠1+∠DFE=180∘ ,∠1+∠2=180∘,
    ∴ ∠2=∠DFE,∴ AB//EF,∴ ∠3=∠ADE.
    ∵ ∠3=∠B,∴ ∠B=∠ADE,∴ DE//BC.
    【考点】
    平行线的判定
    【解析】
    此题暂无解析
    【解答】
    证明:∵ ∠1+∠DFE=180∘ ,∠1+∠2=180∘,
    ∴ ∠2=∠DFE,∴ AB//EF,∴ ∠3=∠ADE.
    ∵ ∠3=∠B,∴ ∠B=∠ADE,∴ DE//BC.
    【答案】
    解:(1)∵ 点M在二、四象限的角平分线上,
    ∴ −m−1=2m+3,∴ m=−23,∴ 点M的坐标为−53,53;
    (2)∵ 点N的坐标为1,−3,直线MN//x轴,
    ∴ 2m+3=−3,∴ m=−3,∴ 点M的坐标为−4,−3.
    【考点】
    点的坐标
    坐标与图形性质
    【解析】
    此题暂无解析
    【解答】
    解:(1)∵ 点M在二、四象限的角平分线上,
    ∴ −m−1=2m+3,∴ m=−23,∴ 点M的坐标为−53,53;
    (2)∵ 点N的坐标为1,−3,直线MN//x轴,
    ∴ 2m+3=−3,∴ m=−3,∴ 点M的坐标为−4,−3.
    【答案】
    解:(1)如图, △A′B′C′即为所求;
    a−6,b+4
    (3) S△ABC=4×4−12×2×4−12×2×3−12×1×4=7.
    【考点】
    网格中点的坐标
    坐标与图形变化-平移
    点的坐标
    三角形的面积
    【解析】
    此题暂无解析
    【解答】
    解:(1)如图, △A′B′C′即为所求;
    (2) a−6,b+4;
    (3) S△ABC=4×4−12×2×4−12×2×3−12×1×4=7.
    【答案】
    44.7
    (2)∵ 191.8=1.918×100,
    ∴ a=3.68×100=3.68×10000=36800,
    ∴ a=36800;
    (3)∵ 1.26×10=12.6,∴ 3n×10=3m
    ∴ 3n×31000=3m,∴ m=1000n.
    【考点】
    算术平方根
    规律型:数字的变化类
    【解析】
    此题暂无解析
    【解答】
    解:(1)44.7;
    (2)∵ 191.8=1.918×100,
    ∴ a=3.68×100=3.68×10000=36800,
    ∴ a=36800;
    (3)∵ 1.26×10=12.6,∴ 3n×10=3m
    ∴ 3n×31000=3m,∴ m=1000n.
    【答案】
    解:(1)当A3,2 时,3×3=9,2×2+5=4+5=9,
    ∴ 3×3=2×2+5,
    ∴ A3,2是“新奇点”;
    (2)点M在第三象限,
    理由如下:
    ∵ 点Mm−1,3m+2是“新奇点”,
    ∴ 3m−1=23m+2+5
    解得m=−4 ,
    ∴ m−1=−5 ,3m+2=−10,
    ∴ 点M−5,−10在第三象限.
    【考点】
    点的坐标
    象限中点的坐标
    【解析】
    此题暂无解析
    【解答】
    解:(1)当A3,2 时,3×3=9,2×2+5=4+5=9,
    ∴ 3×3=2×2+5,
    ∴ A3,2是“新奇点”;
    (2)点M在第三象限,
    理由如下:
    ∵ 点Mm−1,3m+2是“新奇点”,
    ∴ 3m−1=23m+2+5
    解得m=−4 ,
    ∴ m−1=−5 ,3m+2=−10,
    ∴ 点M−5,−10在第三象限.
    【答案】
    解:(1)∵ ∠BOD+∠AOD=180∘,∠BOD+∠COD=180∘,
    ∴ ∠AOD=∠COD=24∘ ,∴ ∠BOC=180∘−∠AOD−∠COD=180∘−24∘−24∘=132∘,
    ∵ n=3,∴ ∠BOC=3∠EOC=132∘ ,∴ ∠EOC=13∠BOC=13×132∘=44∘,
    ∴ ∠EOD=∠COD+∠EOC=24∘+44∘=68∘.
    (2)设∠AOD=x,
    ∵ ∠BOD+∠AOD=180∘,∠BOD=∠COD=180∘,
    ∴ ∠AOD=∠COD=x ,∴ ∠BOC=180∘−∠AOD−∠COD=180∘−2x,
    ∵ DO⊥OE ,∴ ∠DOE=90∘,∴ ∠COE=90∘−∠COD=90∘−x,
    ∵ ∠BOC=n∠EOC ,∴ 180∘−2x=n90∘−x ,∴ n=2 ;
    (3)∵ ∠BOD+∠AOD=180∘,∠BOD+∠COD=180∘,
    ∴ ∠AOD=∠COD=α,∴ ∠BOC=180∘−∠AOD−∠COD=180∘−2α,
    ∵ n=4 ,∴ ∠BOC=4∠EOC=180∘−2α,
    ∴ ∠EOC=14×180∘−2α=45∘−α2,
    ∴ ∠EOD=∠COD+∠EOC=45∘−α2+α=45∘+α2.
    【考点】
    余角和补角
    垂线
    角的计算
    【解析】
    此题暂无解析
    【解答】
    解:(1)∵ ∠BOD+∠AOD=180∘,∠BOD+∠COD=180∘,
    ∴ ∠AOD=∠COD=24∘ ,∴ ∠BOC=180∘−∠AOD−∠COD=180∘−24∘−24∘=132∘,
    ∵ n=3,∴ ∠BOC=3∠EOC=132∘ ,∴ ∠EOC=13∠BOC=13×132∘=44∘,
    ∴ ∠EOD=∠COD+∠EOC=24∘+44∘=68∘.
    (2)设∠AOD=x,
    ∵ ∠BOD+∠AOD=180∘,∠BOD=∠COD=180∘,
    ∴ ∠AOD=∠COD=x ,∴ ∠BOC=180∘−∠AOD−∠COD=180∘−2x,
    ∵ DO⊥OE ,∴ ∠DOE=90∘,∴ ∠COE=90∘−∠COD=90∘−x,
    ∵ ∠BOC=n∠EOC ,∴ 180∘−2x=n90∘−x ,∴ n=2 ;
    (3)∵ ∠BOD+∠AOD=180∘,∠BOD+∠COD=180∘,
    ∴ ∠AOD=∠COD=α,∴ ∠BOC=180∘−∠AOD−∠COD=180∘−2α,
    ∵ n=4 ,∴ ∠BOC=4∠EOC=180∘−2α,
    ∴ ∠EOC=14×180∘−2α=45∘−α2,
    ∴ ∠EOD=∠COD+∠EOC=45∘−α2+α=45∘+α2.

    相关试卷

    2021-2022学年安徽省铜陵市某校初一(下)期中考试数学试卷人教版:

    这是一份2021-2022学年安徽省铜陵市某校初一(下)期中考试数学试卷人教版,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2021-2022学年安徽省铜陵市某校初二(下)期中考试数学试卷人教版:

    这是一份2021-2022学年安徽省铜陵市某校初二(下)期中考试数学试卷人教版,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2020-2021学年安徽省铜陵市某校初二(下)期中考试数学试卷新人教版:

    这是一份2020-2021学年安徽省铜陵市某校初二(下)期中考试数学试卷新人教版

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map