终身会员
搜索
    上传资料 赚现金

    高中数学讲义微专题38 向量的数量积——数量积的投影定义(含数量积综合练习题)学案

    立即下载
    加入资料篮
    高中数学讲义微专题38  向量的数量积——数量积的投影定义(含数量积综合练习题)学案第1页
    高中数学讲义微专题38  向量的数量积——数量积的投影定义(含数量积综合练习题)学案第2页
    高中数学讲义微专题38  向量的数量积——数量积的投影定义(含数量积综合练习题)学案第3页
    还剩12页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学讲义微专题38 向量的数量积——数量积的投影定义(含数量积综合练习题)学案

    展开

    这是一份高中数学讲义微专题38 向量的数量积——数量积的投影定义(含数量积综合练习题)学案,共15页。学案主要包含了基础知识,典型例题,历年好题精选等内容,欢迎下载使用。


    www.ks5u.com微专题38 向量的数量积——数量积的投影定义

    一、基础知识

    1、向量的投影:

    1)有向线段的值:设有一轴是轴上的有向线段,如果实数满足,且当与轴同向时,,当与轴反向时,,则称为轴上有向线段的值。

    2)点在直线上的投影:若点在直线外,则过,则称在直线上的投影;若点在直线上,则在直线上的投影重合。所以说,投影往往伴随着垂直。

     

     

     

    3)向量的投影:已知向量,若的起点所在轴(与同向)上的投影分别为,则向量在轴上的值称为上的投影,向量称为上的投影向量。

    2、向量的投影与向量夹角的关系:通过作图可以观察到,向量的夹角将决定投影的符号,记为向量的夹角

    1为锐角:则投影(无论是上的投影还是上的投影)均为正

    2为直角:则投影为零

    3为钝角:则投影为负

    3、投影的计算公式:以上的投影为例,通过构造直角三角形可以发现

    1)当为锐角时,,因为,所以

    2)当为锐角时,,因为,所以

    3)当为直角时,,而,所以也符合

    综上可得:上的投影,即被投影向量的模乘以两向量的夹角

    4、数量积与投影的关系(数量积的几何定义):

    向量数量积公式为,可变形为,进而与向量投影找到联系

    1)数量积的投影定义:向量的数量积等于其中一个向量的模长乘以另一个向量在该向量上的投影,即(记上的投影)

    2)投影的计算公式:由数量积的投影定义出发可知投影也可利用数量积和模长进行求解:

       即数量积除以被投影向量的模长

    5、数量积投影定义的适用范围:作为数量积的几何定义,通常适用于处理几何图形中的向量问题

    1)图形中出现与所求数量积相关的垂直条件,尤其是垂足确定的情况下(此时便于确定投影),例如:直角三角形,菱形对角线,三角形的外心(外心到三边投影为三边中点)

    2)从模长角度出发,在求数量积的范围中,如果所求数量积中的向量中有一个模长是定值,则可以考虑利用投影,从而将问题转化为寻找投影最大最小的问题

    二、典型例题:

    1:已知向量满足,且,则方向上的投影为   

    A3                   B.               C                  D

    思路:考虑上的投影为,所以只需求出即可。由 可得:,所以。进而

    答案:C

    小炼有话说:本题主要应用投影的计算公式,注意在哪个向量投影,便用数量积除以该向量的模长

     

    2:如图,在中,是边上的高,则的值等于(     

    A0            B4        C8         D

    思路:由图中垂直可得:上的投影为,所以,只需求出的高即可。由已知可得,所以

    答案:B

    3:两个半径分别为的圆,公共弦长为3,如图所示,则__________.

    思路:为两个圆的公共弦,从而圆心到弦的投影为的中点,进而上的投影能够确定,所以考虑计算时可利用向量的投影定义。

    解:取中点,连结,由圆的性质可得:

     

    4:如图,的外心,为钝角,是边的中点,则的值为(    

    A. 4       B.       C.        D.

    思路:外心上的投影恰好为它们的中点,分别设为,所以上的投影为,而恰好为中点,故考虑,所以

    答案:B

    小炼有话说:题目中遇到外心时,要注意外心的性质,即到各边的投影为各边的中点,进而在求数量积时可联想到投影法。

    5:若过点的直线相交于两点,则的取值范围是_______

    思路:本题中因为位置不断变化,所以不易用数量积定义求解,可考虑利用投影,即过作直线的垂线,

    垂足为,通过旋转可发现,当时,位于其他位置时,点始终位于的反向延长线上,,故,故,下面寻找最小值,即的最大值,可得当上的投影与重合时,最大,即为,此时直线即为直线。所以。进而的范围是

    答案:                         

    6:已知,且的夹角为,点的外接圆上优弧上的一个动点,则的最大值是________

    思路:题中的模长为定值,考虑即为乘以上的投影,从而的最大值只需寻找投影的大小,观察图形可得只有当同向时,投影最大。即,只需计算的模长即可

    解:当同向时,上的投影最大

    中,

     

    答案:

    7:如图,菱形的边长为中点,若为菱形内任意一点(含边界),则的最大值为(    

    A.        B.          C.        D. 

    思路:在所给菱形中方向大小确定,在求数量积时可想到投影定义,即乘以上的投影,所以的最大值只需要寻找上的投影的最大值即可,而点也确定,所以只需在菱形内部和边界寻找在投影距离最远的,结合图像可发现的投影距离最远,所以,再由表示后进行数量积运算即可

    解:

                

    答案:9

    小炼有话说

    1)从例7也可以看出投影计算数量积的一个妙用,即在求数量积最值时,如果其中一个向量位置确定,那么只需看另一向量在该向量处的投影即可,这种方法往往能够迅速找到取得最值的情况

    2)在找到取到最值的点位置后,发现利用投影计算数量积并不方便(投影,不便于计算),则要灵活利用其他方法把数量积计算出来(寻求基底,建系等)。正所谓:寻找最值用投影,而计算时却有更多方法供选择。

     

     

    8:如图,在等腰直角中,,点分别是的中点,点是内(包括边界)任一点,则的取值范围是____________

    思路:因为点为内任一点,所以很难用定义表示出,考虑利用投影定义。由长为定值,可得乘以上的投影,所以只需找到投影的范围即可。如图,过的垂线,则点的投影为,当点时, 上的投影最大且为线段的长,当点时, 上的投影最小,为,分别计算相关模长即可。在图中有条件可得: ,所以可得:,则,所以,由为中点可得:中点,从而方向上的投影分别为,由即可求得的范围为

    答案:

    9:已知为直角三角形的外接圆,是斜边上的高,且,点为线段的中点,若中绕圆心运动的一条直径,则_________

    思路:本题的难点在于是一条运动的直径,所以很难直接用定义求解。考虑到为直径,所以延长交圆,即可得,则上的投影向量为。所求,而由联想到相交弦定理,从而。考虑与已知条件联系求出直径上的各段线段长度。由射影定理可得:,且,所以解得,再由的中点可得,所以,进而

    答案:

    10:已知为线段上一点,为直线外一点,上一点,满足,且,则的值为(   

    A.              B.              C.              D. 

    思路:从条件上判断很难用代数方式求解,所以考虑作图观察几何特点,则。由及所求可想到投影与数量积的关系,即上的投影相等,即可得到平分。再分析,且的单位向量,由平行四边形性质可得和向量平分,而与和向量共线,从而平分,由此可得的内心,作出内切圆。所求也可视为上的投影,即,由内切圆性质可得:,所以,且有,可解得

    答案:C

    小炼有话说:本题用到向量运算中的两个几何意义,从而将表达式与图形特征联系起来:一个是向量投影的定义;一个是两个模长相等向量(如单位向量)的和平分向量夹角。

    三、历年好题精选(数量积三种求法综合)

    1、如图:在平行四边形中,已知,则的值是       .

    2、已知的半径为1,四边形为其内接正方形,的一条直径,为正方形边界上一动点,则的最小值为_________

    3、已知点是边长为2的正方形的内切圆内(含边界)的一动点,则的取值范围是(   

    A.           B.              C.                 D. 

    4、已知是单位圆上互不相同的三个点,且满足,则的最小值为(   

    A             B           C            D

    5、如图,是半径为1的圆上两点,且,若点是圆上任意一点,则的取值范围是__________

    6、(2015,福建文)设,若,则实数的值等于(   

    A.                B.                 C.              D. 

    7、(2015,天津)在等腰梯形,已知 ,动点分别在线段,, 的最小值为  ____

    答案:

    8、(2015,山东)已知菱形的边长为,则   

    A.                B.              C.             D. 

    9、(2015,福建)已知,若点是所在平面内一点,且,则的最大值等于(    

    A.                     B.                    C.               D. 

    10、(2016,无锡联考)如图,已知正方形的边长为2,点的中点.以为圆心,为半径,作弧交于点.若为劣弧上的动点,则的最小值为________

    11、(2016,南京金陵中学期中)如图,梯形中,,若,则_______

    12、已知圆的直径为,点是圆周上异于的一点,且,若点是圆所在平面内一点,且,则的最大值为(    

    A.               B.               C.               D. 

    13、如图,在半径为1的扇形中,为弧上的动点,交于点,则最小值是__________

     

     

     

    14、如图,已知圆,四边形为圆的内接正方形,分别为边的中点,当正方形圆心转动时,的取值范围是(   

    A.    B.  C.    D.

     

     

     

     

    15、在直角梯形中,,且的中点,且,则的值为(   

    A.            B.           C.           D. 

     

    16、如图,在平行四边形中,,点边上,且,则    

    A.          B.         C.       D. 

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    习题答案:

    1、答案:

    解析:

    所以

    ,解得

    2答案:

    解析:以为坐标轴建系,则,设

    ,所以的最小值只需找到的最小值

    即正方形边上的点到原点距离的最小值,数形结合可得:

    3答案:C

    解析:考虑如图建立坐标系,可得:,内切圆方程为:,故设,则

    ,可得

    再由可得:,所以

     

    4答案:B

    解析:设,则由可得:

    ,其中

    时,可得

     

    5答案:

    解析:方法一:以为原点,轴建系,则,设,则。所以

    方法二:考虑上的投影为中点,利用数量积投影定义数形结合可知取最大值时,重合;当取最小值时,反向延长线与圆的交点处,经计算可得:

     

    6答案:A

    解析:由已知可得:,因为,所以

    7答案:

    解析:因为

    当且仅当的最小值为.

    8、答案:D

    解析:

    9、答案:A

    解析:以为坐标原点,如图建立平面直角坐标系,则为单位向量,坐标为,则 所以,因为,所以

     

    10答案:

    解析:可依正方形以为坐标轴建系,则,其中

    其中,所以当时,取到最小值,为

    11答案:0

    解析:依题意可得:

    12答案:C

    解析:因为为直径,所以可知,设,则,以为原点,所在直线为轴建系,可得,且的单位向量,则坐标分别为,所以,即,可得到,则,由可得

    13答案:

    解析:点上的投影为中点,故考虑使用投影计算数量积的最值。可知在线段上时,,则,所以的最小值为

    14答案:B

    解析:

    ,其中,则由可得:

              

    15答案:D

    解析:如图可依直角建立坐标系,则,所以,由可知,所以,所以

    16答案:D

    解析:可知

    由已知可得:,代入可得:

     

     

    相关学案

    高中数学讲义微专题36 向量的数量积——寻找合适的基底学案:

    这是一份高中数学讲义微专题36 向量的数量积——寻找合适的基底学案,共8页。学案主要包含了基础知识,例题精炼等内容,欢迎下载使用。

    高中数学讲义微专题37 向量的数量积——坐标化解决向量问题学案:

    这是一份高中数学讲义微专题37 向量的数量积——坐标化解决向量问题学案,共9页。学案主要包含了基础知识,典型例题等内容,欢迎下载使用。

    专题27 向量的数量积-数量积的投影定义(原卷版)学案:

    这是一份专题27 向量的数量积-数量积的投影定义(原卷版)学案,共5页。学案主要包含了热点聚焦与扩展,经典例题,精选精练等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map