|试卷下载
终身会员
搜索
    上传资料 赚现金
    咸宁市重点中学2022年十校联考最后数学试题含解析
    立即下载
    加入资料篮
    咸宁市重点中学2022年十校联考最后数学试题含解析01
    咸宁市重点中学2022年十校联考最后数学试题含解析02
    咸宁市重点中学2022年十校联考最后数学试题含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    咸宁市重点中学2022年十校联考最后数学试题含解析

    展开
    这是一份咸宁市重点中学2022年十校联考最后数学试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列分式是最简分式的是,已知抛物线y=ax2+bx+c等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是(  )

    A. B. C. D.
    2.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE的大小为定值.
    其中正确的结论个数为( )

    A.4 B.3 C.2 D.1
    3.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为( )

    A.15m B.25m C.30m D.20m
    4.若方程x2﹣3x﹣4=0的两根分别为x1和x2,则+的值是(  )
    A.1 B.2 C.﹣ D.﹣
    5.如图,PA和PB是⊙O的切线,点A和B是切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是( )

    A.60° B.65° C.70° D.75°
    6.下列分式是最简分式的是( )
    A. B. C. D.
    7.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为(  )

    A.1 B. C.-1 D.+1
    8.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0; ②﹣1≤a≤; ③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为(  )
    A.1个 B.2个 C.3个 D.4个
    9.在六张卡片上分别写有,π,1.5,5,0,六个数,从中任意抽取一张,卡片上的数为无理数的概率是(  )
    A. B. C. D.
    10.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是(  )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.关于x的不等式组的整数解共有3个,则a的取值范围是_____.
    12.如图,在△ABC中,DE∥BC,EF∥AB.若AD=2BD,则的值等于_____

    13.如图,把△ABC绕点C顺时针旋转得到△A'B'C',此时A′B′⊥AC于D,已知∠A=50°,则∠B′CB的度数是_____°.

    14.若代数式在实数范围内有意义,则x的取值范围是_______.
    15.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为_______________.

    16.用科学计数器计算:2×sin15°×cos15°= _______(结果精确到0.01).
    三、解答题(共8题,共72分)
    17.(8分)如图,在△ABC中,CD⊥AB于点D,tanA=2cos∠BCD,
    (1)求证:BC=2AD;
    (2)若cosB=,AB=10,求CD的长.

    18.(8分)如图,AB是的直径,AF是切线,CD是垂直于AB的弦,垂足为点E,过点C作DA的平行线与AF相交于点F,已知,.
    求AD的长;
    求证:FC是的切线.

    19.(8分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示.
    (1)求与的函数关系式,并写出的取值范围;
    (2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?
    (3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.

    20.(8分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛.从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计频数分布直方图(未完成)和扇形图如下,请解答下列问题:
    (1)A组的频数a比B组的频数b小24,样本容量   ,a为   :
    (2)n为   °,E组所占比例为   %:
    (3)补全频数分布直方图;
    (4)若成绩在80分以上优秀,全校共有2000名学生,估计成绩优秀学生有   名.

    21.(8分)某商场甲、乙两名业务员10个月的销售额(单位:万元)如下:

    7.2 9.69.67.89.3 4 6.58.59.99.6

    5.89.79.76.89.96.98.26.78.69.7
    根据上面的数据,将下表补充完整:

    4.0≤x≤4.9
    5.0≤x≤5.9
    6.0≤x≤6.9
    7.0≤x≤7.9
    8.0≤x≤8.9
    9.0≤x≤10.0

    1
    0
    1
    2
    1
    5

    ____
    ____
    _____
    ______
    _____
    _______
    (说明:月销售额在8.0万元及以上可以获得奖金,7.0~7.9万元为良好,6.0~6.9万元为合格,6.0万元以下为不合格)
    两组样本数据的平均数、中位数、众数如表所示:
    结论:
    人员
    平均数(万元)
    中位数(万元)
    众数(万元)

    8.2
    8.9
    9.6

    8.2
    8.4
    9.7
    (1)估计乙业务员能获得奖金的月份有______个;
    (2)可以推断出_____业务员的销售业绩好,理由为_______.(至少从两个不同的角度说明推断的合理性)
    22.(10分)一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB=1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长.

    23.(12分)将一个等边三角形纸片AOB放置在平面直角坐标系中,点O(0,0),点B(6,0).点C、D分别在OB、AB边上,DC∥OA,CB=2.
    (I)如图①,将△DCB沿射线CB方向平移,得到△D′C′B′.当点C平移到OB的中点时,求点D′的坐标;
    (II)如图②,若边D′C′与AB的交点为M,边D′B′与∠ABB′的角平分线交于点N,当BB′多大时,四边形MBND′为菱形?并说明理由.
    (III)若将△DCB绕点B顺时针旋转,得到△D′C′B,连接AD′,边D′C′的中点为P,连接AP,当AP最大时,求点P的坐标及AD′的值.(直接写出结果即可).

    24.(阅读)如图1,在等腰△ABC中,AB=AC,AC边上的高为h,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为h1,h1.连接AM.
    ∵ ∴
          
    (思考)在上述问题中,h1,h1与h的数量关系为: .
    (探究)如图1,当点M在BC延长线上时,h1、h1、h之间有怎样的数量关系式?并说明理由.
    (应用)如图3,在平面直角坐标系中有两条直线l1:,l1:y=-3x+3,若l1上的一点M到l1的距离是1,请运用上述结论求出点M的坐标.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.
    【详解】
    设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,
    ∵△ABC放大到原来的2倍得到△A′B′C,
    ∴2(﹣1﹣x)=a+1,
    解得x=﹣(a+3),
    故选:D.
    【点睛】
    本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.
    2、B
    【解析】
    试题分析:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本选项正确;
    ②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N(如图1),则△CBM≌△CDN(AAS),∴S四边形BCDG=S四边形CMGN,S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=,故本选项错误;
    ③过点F作FP∥AE于P点(如图2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:AE=1:6,∵FP∥AE,∴PF∥BE,∴FG:BG=FP:BE=1:6,即BG=6GF,故本选项正确;
    ④当点E,F分别是AB,AD中点时(如图3),由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;
    ⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;
    综上所述,正确的结论有①③⑤,共3个,故选B.

    考点:四边形综合题.
    3、D
    【解析】
    根据三角形的中位线定理即可得到结果.
    【详解】
    解:由题意得AB=2DE=20cm,
    故选D.
    【点睛】
    本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
    4、C
    【解析】
    试题分析:找出一元二次方程的系数a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后利用异分母分式的变形,将求出的两根之和x1+x2=3与两根之积x1•x2=﹣4代入,即可求出=.
    故选C.
    考点:根与系数的关系
    5、C
    【解析】
    试题分析:连接OB,根据PA、PB为切线可得:∠OAP=∠OBP=90°,根据四边形AOBP的内角和定理可得∠AOB=140°,∵OC=OB,则∠C=∠OBC,根据∠AOB为△OBC的外角可得:∠ACB=140°÷2=70°.
    考点:切线的性质、三角形外角的性质、圆的基本性质.
    6、C
    【解析】
    解:A.,故本选项错误;
    B.,故本选项错误;
    C.,不能约分,故本选项正确;
    D.,故本选项错误.
    故选C.
    点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键.
    7、C
    【解析】
    【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S四边形BCED,可得出,结合BD=AB﹣AD即可求出的值.
    【详解】∵DE∥BC,
    ∴∠ADE=∠B,∠AED=∠C,
    ∴△ADE∽△ABC,
    ∴,
    ∵S△ADE=S四边形BCED,S△ABC=S△ADE+S四边形BCED,
    ∴,
    ∴,
    故选C.
    【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.
    8、C
    【解析】
    ①由抛物线的顶点横坐标可得出b=-2a,进而可得出4a+2b=0,结论①错误;
    ②利用一次函数图象上点的坐标特征结合b=-2a可得出a=-,再结合抛物线与y轴交点的位置即可得出-1≤a≤-,结论②正确;
    ③由抛物线的顶点坐标及a<0,可得出n=a+b+c,且n≥ax2+bx+c,进而可得出对于任意实数m,a+b≥am2+bm总成立,结论③正确;
    ④由抛物线的顶点坐标可得出抛物线y=ax2+bx+c与直线y=n只有一个交点,将直线下移可得出抛物线y=ax2+bx+c与直线y=n-1有两个交点,进而可得出关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.
    【详解】
    :①∵抛物线y=ax2+bx+c的顶点坐标为(1,n),
    ∴-=1,
    ∴b=-2a,
    ∴4a+2b=0,结论①错误;

    ②∵抛物线y=ax2+bx+c与x轴交于点A(-1,0),
    ∴a-b+c=3a+c=0,
    ∴a=-.
    又∵抛物线y=ax2+bx+c与y轴的交点在(0,2),(0,3)之间(包含端点),
    ∴2≤c≤3,
    ∴-1≤a≤-,结论②正确;
    ③∵a<0,顶点坐标为(1,n),
    ∴n=a+b+c,且n≥ax2+bx+c,
    ∴对于任意实数m,a+b≥am2+bm总成立,结论③正确;
    ④∵抛物线y=ax2+bx+c的顶点坐标为(1,n),
    ∴抛物线y=ax2+bx+c与直线y=n只有一个交点,
    又∵a<0,
    ∴抛物线开口向下,
    ∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,
    ∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.
    故选C.
    【点睛】
    本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.
    9、B
    【解析】
    无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.
    【详解】
    ∵这组数中无理数有,共2个,
    ∴卡片上的数为无理数的概率是 .
    故选B.
    【点睛】
    本题考查了无理数的定义及概率的计算.
    10、B
    【解析】
    分析:根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案.
    详解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;
    故选B.
    点睛:本题考查了函数图象,根据距离的变化描述函数是解题关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.
    【详解】
    解:由不等式①得:x>a,由不等式②得:x<1,所以不等式组的解集是a<x<1.
    ∵关于x的不等式组的整数解共有3个,∴3个整数解为0,﹣1,﹣2,∴a的取值范围是﹣3≤a<﹣2.
    故答案为:﹣3≤a<﹣2.
    【点睛】
    本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
    12、
    【解析】
    根据平行线分线段成比例定理解答即可.
    【详解】
    解:∵DE∥BC,AD=2BD,
    ∴,
    ∵EF∥AB,
    ∴,
    故答案为.
    【点睛】
    本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.
    13、1
    【解析】
    由旋转的性质可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠ACA'=1°=∠B′CB.
    【详解】
    解:∵把△ABC绕点C顺时针旋转得到△A'B'C',
    ∴∠A=∠A'=50°,∠BCB'=∠ACA'
    ∵A'B'⊥AC
    ∴∠A'+∠ACA'=90°
    ∴∠ACA'=1°
    ∴∠BCB'=1°
    故答案为:1.
    【点睛】
    本题考查了旋转的性质,熟练运用旋转的性质是本题的关键.
    14、
    【解析】
    先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.
    解:∵在实数范围内有意义,
    ∴x-1≥2,
    解得x≥1.
    故答案为x≥1.
    本题考查的是二次根式有意义的条件,即被开方数大于等于2.
    15、
    【解析】
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】60000小数点向左移动4位得到6,
    所以60000用科学记数法表示为:6×1,
    故答案为:6×1.
    【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    16、0.50
    【解析】
    直接使用科学计算器计算即可,结果需保留二位有效数字.
    【详解】
    用科学计算器计算得0.5,
    故填0.50,
    【点睛】
    此题主要考查科学计算器的使用,注意结果保留二位有效数字.

    三、解答题(共8题,共72分)
    17、(1)证明见解析;(2)CD=2.
    【解析】
    (1)根据三角函数的概念可知tanA=,cos∠BCD=,根据tanA=2cos∠BCD即可得结论;(2)由∠B的余弦值和(1)的结论即可求得BD,利用勾股定理求得CD即可.
    【详解】
    (1)∵tanA=,cos∠BCD=,tanA=2cos∠BCD,
    ∴=2·,
    ∴BC=2AD.
    (2)∵cosB==,BC=2AD,
    ∴=.
    ∵AB=10,∴AD=×10=4,BD=10-4=6,
    ∴BC=8,∴CD==2.
    【点睛】
    本题考查了直角三角形中的有关问题,主要考查了勾股定理,三角函数的有关计算.熟练掌握三角函数的概念是解题关键.
    18、(1);(2)证明见解析.
    【解析】
    (1)首先连接OD,由垂径定理,可求得DE的长,又由勾股定理,可求得半径OD的长,然后由勾股定理求得AD的长;
    (2)连接OF、OC,先证明四边形AFCD是菱形,易证得△AFO≌△CFO,继而可证得FC是⊙O的切线.
    【详解】
    证明:连接OD,

    是的直径,,

    设,


    在中,,

    解得:,
    ,,

    在中,;
    连接OF、OC,
    是切线,




    四边形FADC是平行四边形,



    平行四边形FADC是菱形





    即,
    即,
    点C在上,
    是的切线.
    【点睛】
    此题考查了切线的判定与性质、菱形的判定与性质、垂径定理、勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
    19、(1)();(2)定价为19元时,利润最大,最大利润是1210元.(3)不能销售完这批蜜柚.
    【解析】
    【分析】(1)根据图象利用待定系数法可求得函数解析式,再根据蜜柚销售不会亏本以及销售量大于0求得自变量x的取值范围;
    (2)根据利润=每千克的利润×销售量,可得关于x的二次函数,利用二次函数的性质即可求得;
    (3)先计算出每天的销量,然后计算出40天销售总量,进行对比即可得.
    【详解】(1)设 ,将点(10,200)、(15,150)分别代入,
    则,解得 ,
    ∴,
    ∵蜜柚销售不会亏本,∴,
    又,∴ ,∴,
    ∴ ;
    (2) 设利润为元,

    =
    =,
    ∴ 当 时, 最大为1210,
    ∴ 定价为19元时,利润最大,最大利润是1210元;
    (3) 当 时,,
    110×40=4400<4800,
    ∴不能销售完这批蜜柚.
    【点睛】 本题考查了一次函数的应用、二次函数的应用,弄清题意,找出数量间的关系列出函数解析式是解题的关键.
    20、(1)200;16(2)126;12%(3)见解析(4)940
    【解析】
    分析:(1)由于A组的频数比B组小24,而A组的频率比B组小12%,则可计算出调查的总人数,然后计算a和b的值;(2)用360度乘以D组的频率可得到n的值,根据百分比之和为1可得E组百分比;(3)计算出C和E组的频数后补全频数分布直方图;(4)利用样本估计总体,用2000乘以D组和E组的频率和即可.
    本题解析:
    ()调查的总人数为,
    ∴,

    ()部分所对的圆心角,即,
    组所占比例为:,
    ()组的频数为,组的频数为,
    补全频数分布直方图为:

    (),
    ∴估计成绩优秀的学生有人.
    点睛:本题考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,要认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查了用样本估计总体.
    21、填表见解析;(1)6;(2)甲;甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.
    【解析】
    (1)月销售额在8.0万元及以上可以获得奖金,去销售额中找到乙大于8.0的个数即可解题,
    (2)根据中位数和平均数即可解题.
    【详解】
    解:如图,
    销售额
    数量
    x
    人员
    4.0≤x≤4.9
    5.0≤x≤5.9
    6.0≤x≤6.9
    7.0≤x≤7.9
    8.0≤x≤8.9
    9.0≤x≤10.0

    1
    0
    1
    2
    1
    5

    0
    1
    3
    0
    2
    4
    (1)估计乙业务员能获得奖金的月份有6个;
    (2)可以推断出甲业务员的销售业绩好,理由为:甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.
    故答案为0,1,3,0,2,4;6;甲,甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.
    【点睛】
    本题考查了统计的相关知识,众数,平均数的应用,属于简单题,将图表信息转换成有用信息是解题关键.
    22、路灯高CD为5.1米.
    【解析】
    根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.
    【详解】
    设CD长为x米,
    ∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,
    ∴MA∥CD∥BN,
    ∴EC=CD=x米,
    ∴△ABN∽△ACD,
    ∴=,即,
    解得:x=5.1.
    经检验,x=5.1是原方程的解,
    ∴路灯高CD为5.1米.
    【点睛】
    本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形.
    23、(Ⅰ)D′(3+,3);(Ⅱ)当BB'=时,四边形MBND'是菱形,理由见解析;
    (Ⅲ)P().
    【解析】
    (Ⅰ)如图①中,作DH⊥BC于H.首先求出点D坐标,再求出CC′的长即可解决问题;
    (Ⅱ)当BB'=时,四边形MBND'是菱形.首先证明四边形MBND′是平行四边形,再证明BB′=BC′即可解决问题;
    (Ⅲ)在△ABP中,由三角形三边关系得,AP<AB+BP,推出当点A,B,P三点共线时,AP最大.
    【详解】
    (Ⅰ)如图①中,作DH⊥BC于H,

    ∵△AOB是等边三角形,DC∥OA,
    ∴∠DCB=∠AOB=60°,∠CDB=∠A=60°,
    ∴△CDB是等边三角形,
    ∵CB=2,DH⊥CB,
    ∴CH=HB=,DH=3,
    ∴D(6﹣,3),
    ∵C′B=3,
    ∴CC′=2﹣3,
    ∴DD′=CC′=2﹣3,
    ∴D′(3+,3).
    (Ⅱ)当BB'=时,四边形MBND'是菱形,
    理由:如图②中,

    ∵△ABC是等边三角形,
    ∴∠ABO=60°,
    ∴∠ABB'=180°﹣∠ABO=120°,
    ∵BN是∠ACC'的角平分线,
    ∴∠NBB′'=∠ABB'=60°=∠D′C′B,
    ∴D'C'∥BN,∵AB∥B′D′
    ∴四边形MBND'是平行四边形,
    ∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,
    ∴△MC′B'和△NBB'是等边三角形,
    ∴MC=CE',NC=CC',
    ∵B'C'=2,
    ∵四边形MBND'是菱形,
    ∴BN=BM,
    ∴BB'=B'C'=;
    (Ⅲ)如图连接BP,

    在△ABP中,由三角形三边关系得,AP<AB+BP,
    ∴当点A,B,P三点共线时,AP最大,
    如图③中,在△D'BE'中,由P为D'E的中点,得AP⊥D'E',PD'=,
    ∴CP=3,
    ∴AP=6+3=9,
    在Rt△APD'中,由勾股定理得,AD'==2.
    此时P(,﹣).
    【点睛】
    此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(2)的关键是四边形MCND'是平行四边形,解(3)的关键是判断出点A,C,P三点共线时,AP最大.
    24、【思考】h1+h1=h;【探究】h1-h1=h.理由见解析;【应用】所求点M的坐标为(,1)或(-,4).
    【解析】
    思考:根据等腰三角形的性质,把代数式化简可得.
    探究:当点M在BC延长线上时,连接,可得,化简可得.
    应用:先证明,△ABC为等腰三角形,即可运用上面得到的性质,再分点M在BC边上和在CB延长线上两种情况讨论,第一种有1+My=OB,第二种为My-1=OB,解得的纵坐标,再分别代入的解析式即可求解.
    【详解】
    思考



    h1+h1=h.
    探究
    h1-h1=h.
    理由.连接,


    ∴h1-h1=h.
    应用
    在中,令x=0得y=3;
    令y=0得x=-4,则:
    A(-4,0),B(0,3)
    同理求得C(1,0),

    又因为AC=5,
    所以AB=AC,即△ABC为等腰三角形.
    ①当点M在BC边上时,
    由h1+h1=h得:
    1+My=OB,My=3-1=1,
    把它代入y=-3x+3中求得:

    ∴;
    ②当点M在CB延长线上时,
    由h1-h1=h得:
    My-1=OB,My=3+1=4,
    把它代入y=-3x+3中求得:

    ∴,
    综上,所求点M的坐标为或.
    【点睛】
    本题结合三角形的面积和等腰三角形的性质考查了新性质的推理与证明,熟练掌握三角形的性质,结合图形层层推进是解答的关键.

    相关试卷

    云南省重点中学2022年十校联考最后数学试题含解析: 这是一份云南省重点中学2022年十校联考最后数学试题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,如图,与∠1是内错角的是,下列各式中,正确的是等内容,欢迎下载使用。

    盐城市重点中学2022年十校联考最后数学试题含解析: 这是一份盐城市重点中学2022年十校联考最后数学试题含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,函数中,x的取值范围是,二次函数y=,函数y=的自变量x的取值范围是,tan45º的值为,已知点P等内容,欢迎下载使用。

    庆阳市重点中学2021-2022学年十校联考最后数学试题含解析: 这是一份庆阳市重点中学2021-2022学年十校联考最后数学试题含解析,共19页。试卷主要包含了计算的结果是,一组数据等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map