|试卷下载
终身会员
搜索
    上传资料 赚现金
    银川市重点中学2021-2022学年中考适应性考试数学试题含解析
    立即下载
    加入资料篮
    银川市重点中学2021-2022学年中考适应性考试数学试题含解析01
    银川市重点中学2021-2022学年中考适应性考试数学试题含解析02
    银川市重点中学2021-2022学年中考适应性考试数学试题含解析03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    银川市重点中学2021-2022学年中考适应性考试数学试题含解析

    展开
    这是一份银川市重点中学2021-2022学年中考适应性考试数学试题含解析,共18页。试卷主要包含了sin60°的值为等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是(  )
    A. B. C. D.
    2.若关于的一元二次方程有两个不相等的实数根,则的取值范围( )
    A. B. C.且 D.
    3.已知a,b为两个连续的整数,且a< A.7 B.8 C.9 D.10
    4.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是(  )

    A. B. C. D.
    5.sin60°的值为(  )
    A. B. C. D.
    6.若二次函数的图象与轴有两个交点,坐标分别是(x1,0),(x2,0),且. 图象上有一点在轴下方,则下列判断正确的是( )
    A. B. C. D.
    7.如图,二次函数y=ax1+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=1,且OA=OC.则下列结论:①abc>0;②9a+3b+c>0;③c>﹣1;④关于x的方程ax1+bx+c=0(a≠0)有一个根为﹣;⑤抛物线上有两点P(x1,y1)和Q(x1,y1),若x1<1<x1,且x1+x1>4,则y1>y1.其中正确的结论有(  )

    A.1个 B.3个 C.4个 D.5个
    8.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中 5 个黑球, 从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋 中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:
    摸球试验次数
    100
    1000
    5000
    10000
    50000
    100000
    摸出黑球次数
    46
    487
    2506
    5008
    24996
    50007
    根据列表,可以估计出 m 的值是( )
    A.5 B.10 C.15 D.20
    9.小明解方程的过程如下,他的解答过程中从第(  )步开始出现错误.
    解:去分母,得1﹣(x﹣2)=1①
    去括号,得1﹣x+2=1②
    合并同类项,得﹣x+3=1③
    移项,得﹣x=﹣2④
    系数化为1,得x=2⑤
    A.① B.② C.③ D.④
    10.已知关于x的方程恰有一个实根,则满足条件的实数a的值的个数为(  )
    A.1 B.2 C.3 D.4
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,点A在反比例函数y=(x>0)的图像上,过点A作AD⊥y轴于点D,延长AD至点C,使CD=2AD,过点A作AB⊥x轴于点B,连结BC交y轴于点E,若△ABC的面积为6,则k的值为________.

    12.若反比例函数y=的图象与一次函数y=x+k的图象有一个交点为(m,﹣4),则这个反比例函数的表达式为_____.
    13.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是___.

    14.半径是6cm的圆内接正三角形的边长是_____cm.
    15.已知x+y=8,xy=2,则x2y+xy2=_____.
    16.如图,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,则∠DAE=______.

    三、解答题(共8题,共72分)
    17.(8分)如图,矩形中,对角线、交于点,以、为邻边作平行四边形,连接
    求证:四边形是菱形若,,求四边形的面积
    18.(8分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.求甲、乙两种树苗每棵的价格各是多少元?在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?
    19.(8分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:
    组别

    成绩(分)

    频数(人数)

    频率





    2

    0.04





    10

    0.2





    14

    b





    a

    0.32





    8

    0.16

    请根据表格提供的信息,解答以下问题:
    (1)本次决赛共有 名学生参加;
    (2)直接写出表中a= ,b= ;
    (3)请补全下面相应的频数分布直方图;

    (4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .
    20.(8分)先化简代数式,再从﹣1,0,3中选择一个合适的a的值代入求值.
    21.(8分)已知P是⊙O外一点,PO交⊙O于点C,OC=CP=2,弦AB⊥OC,∠AOC的度数为60°,连接PB.
    求BC的长;求证:PB是⊙O的切线.
    22.(10分)如图,点D是AB上一点,E是AC的中点,连接DE并延长到F,使得DE=EF,连接CF.
    求证:FC∥AB.

    23.(12分)列方程或方程组解应用题:
    去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度.
    24.天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,求购买A型和B型公交车每辆各需多少万元?预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    根据轴对称图形的概念求解.
    【详解】
    解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形.
    故选D.
    【点睛】
    本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形
    2、C
    【解析】
    根据一元二次方程的定义结合根的判别式即可得出关于a的一元一次不等式组,解之即可得出结论.
    【详解】
    解:∵关于x的一元二次方程有两个不相等的实数根,
    ∴ ,
    解得:k<1且k≠1.
    故选:C.
    【点睛】
    本题考查了一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a的一元一次不等式组是解题的关键.
    3、A
    【解析】
    ∵9<11<16,
    ∴,
    即,
    ∵a,b为两个连续的整数,且,
    ∴a=3,b=4,
    ∴a+b=7,
    故选A.
    4、D
    【解析】试题分析:俯视图是从上面看到的图形.
    从上面看,左边和中间都是2个正方形,右上角是1个正方形,
    故选D.
    考点:简单组合体的三视图
    5、B
    【解析】
    解:sin60°=.故选B.
    6、D
    【解析】
    根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.
    【详解】
    A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;
    B、∵x1<x2,
    ∴△=b2-4ac>0,故本选项错误;
    C、若a>0,则x1<x0<x2,
    若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;
    D、若a>0,则x0-x1>0,x0-x2<0,
    所以,(x0-x1)(x0-x2)<0,
    ∴a(x0-x1)(x0-x2)<0,
    若a<0,则(x0-x1)与(x0-x2)同号,
    ∴a(x0-x1)(x0-x2)<0,
    综上所述,a(x0-x1)(x0-x2)<0正确,故本选项正确.
    7、D
    【解析】
    根据抛物线的图象与系数的关系即可求出答案.
    【详解】
    解:由抛物线的开口可知:a<0,由抛物线与y轴的交点可知:c<0,由抛物线的对称轴可知:>0,∴b>0,∴abc>0,故①正确;
    令x=3,y>0,∴9a+3b+c>0,故②正确;
    ∵OA=OC<1,∴c>﹣1,故③正确;
    ∵对称轴为直线x=1,∴﹣=1,∴b=﹣4a.
    ∵OA=OC=﹣c,∴当x=﹣c时,y=0,∴ac1﹣bc+c=0,∴ac﹣b+1=0,∴ac+4a+1=0,∴c=,∴设关于x的方程ax1+bx+c=0(a≠0)有一个根为x,∴x﹣c=4,∴x=c+4=,故④正确;
    ∵x1<1<x1,∴P、Q两点分布在对称轴的两侧,
    ∵1﹣x1﹣(x1﹣1)=1﹣x1﹣x1+1=4﹣(x1+x1)<0,
    即x1到对称轴的距离小于x1到对称轴的距离,∴y1>y1,故⑤正确.
    故选D.
    【点睛】
    本题考查的是二次函数图象与系数的关系,二次函数y=ax1+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.本题属于中等题型.
    8、B
    【解析】
    由概率公式可知摸出黑球的概率为,分析表格数据可知的值总是在0.5左右,据此可求解m值.
    【详解】
    解:分析表格数据可知的值总是在0.5左右,则由题意可得,解得m=10,
    故选择B.
    【点睛】
    本题考查了概率公式的应用.
    9、A
    【解析】
    根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题.
    【详解】
    =1,
    去分母,得1-(x-2)=x,故①错误,
    故选A.
    【点睛】
    本题考查解分式方程,解答本题的关键是明确解分式方程的方法.
    10、C
    【解析】
    先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一个实数根,因此,方程①的根有两种情况:(1)方程①有两个相等的实数根,此二等根使x(x-2)≠1;(2)方程①有两个不等的实数根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.针对每一种情况,分别求出a的值及对应的原方程的根.
    【详解】
    去分母,将原方程两边同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①
    方程①的根的情况有两种:
    (1)方程①有两个相等的实数根,即△=9﹣3×2(3﹣a)=1.
    解得a=.
    当a=时,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.
    (2)方程①有两个不等的实数根,而其中一根使原方程分母为零,即方程①有一个根为1或2.
    (i)当x=1时,代入①式得3﹣a=1,即a=3.
    当a=3时,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.
    而x1=1是增根,即这时方程①的另一个根是x=1.4.它不使分母为零,确是原方程的唯一根.
    (ii)当x=2时,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.
    当a=5时,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣ .
    x1是增根,故x=﹣为方程的唯一实根;
    因此,若原分式方程只有一个实数根时,所求的a的值分别是,3,5共3个.
    故选C.
    【点睛】
    考查了分式方程的解法及增根问题.由于原分式方程去分母后,得到一个含有字母的一元二次方程,所以要分情况进行讨论.理解分式方程产生增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1
    【解析】
    连结BD,利用三角形面积公式得到S△ADB=S△ABC=2,则S矩形OBAD=2S△ADB=1,于是可根据反比例函数的比例系数k的几何意义得到k的值.
    【详解】
    连结BD,如图,

    ∵DC=2AD,
    ∴S△ADB=S△BDC=S△BAC=×6=2,
    ∵AD⊥y轴于点D,AB⊥x轴,
    ∴四边形OBAD为矩形,
    ∴S矩形OBAD=2S△ADB=2×2=1,
    ∴k=1.
    故答案为:1.
    【点睛】
    本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
    12、y=﹣.
    【解析】
    把交点坐标代入两个解析式组成方程组,解方程组求得k,即可求得反比例函数的解析式.
    【详解】
    解:∵反比例函数y=的图象与一次函数y=x+k的图象有一个交点为(m,﹣4),
    ∴,
    解得k=﹣5,
    ∴反比例函数的表达式为y=﹣,
    故答案为y=﹣.
    【点睛】
    本题考查了反比例函数与一次函数的交点问题,根据图象上点的坐标特征得出方程组是解题的关键.
    13、50°
    【解析】
    先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.
    【详解】
    如图所示:

    ∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,
    ∴∠BEF=∠1+∠F=50°,
    ∵AB∥CD,
    ∴∠2=∠BEF=50°,
    故答案是:50°.
    【点睛】
    考查了平行线的性质,解题的关键是掌握、运用三角形外角的性质(三角形的一个外角等于与它不相邻的两个内角的和).
    14、6
    【解析】
    根据题意画出图形,作出辅助线,利用垂径定理及等边三角形的性质解答即可.
    【详解】
    如图所示,OB=OA=6,

    ∵△ABC是正三角形,
    由于正三角形的中心就是圆的圆心,
    且正三角形三线合一,
    所以BO是∠ABC的平分线;
    ∠OBD=60°×=30°,
    BD=cos30°×6=6×=3;
    根据垂径定理,BC=2×BD=6,
    故答案为6.
    【点睛】
    本题主要考查了正多边形和圆,正三角形的性质,熟练掌握等边三角形的性质是解题的关键,根据圆的内接正三角形的特点,求出内心到每个顶点的距离,可求出内接正三角形的边长.
    15、1
    【解析】
    将所求式子提取xy分解因式后,把x+y与xy的值代入计算,即可得到所求式子的值.
    【详解】
    ∵x+y=8,xy=2,
    ∴x2y+xy2=xy(x+y)=2×8=1.
    故答案为:1.
    【点睛】
    本题考查的知识点是因式分解的应用,解题关键是将所求式子分解因式.
    16、10°
    【解析】
    根据线段的垂直平分线得出AD=BD,AE=CE,推出∠B=∠BAD,∠C=∠CAE,求出∠BAD+∠CAE的度数即可得到答案.
    【详解】
    ∵点D、E分别是AB、AC边的垂直平分线与BC的交点,
    ∴AD=BD,AE=CE,
    ∴∠B=∠BAD,∠C=∠CAE,
    ∵∠B=40°,∠C=45°,
    ∴∠B+∠C=85°,
    ∴∠BAD+∠CAE=85°,
    ∴∠DAE=∠BAC-(∠BAD+∠CAE)=180°-85°-85°=10°,
    故答案为10°
    【点睛】
    本题主要考查对等腰三角形的性质,三角形的内角和定理,线段的垂直平分线的性质等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.

    三、解答题(共8题,共72分)
    17、(1)见解析;(2)S四边形ADOE =.
    【解析】
    (1) 根据矩形的性质有OA=OB=OC=OD,根据四边形ADOE是平行四边形,得到OD∥AE,AE=OD. 等量代换得到AE=OB.即可证明四边形AOBE为平行四边形.根据有一组邻边相等的平行四边形是菱形即可证明.
    (2)根据菱形的性质有∠EAB=∠BAO.根据矩形的性质有AB∥CD,根据平行线的性质有∠BAC=∠ACD,求出∠DCA=60°,求出AD=.根据面积公式SΔADC,即可求解.
    【详解】
    (1)证明:∵矩形ABCD,
    ∴OA=OB=OC=OD.
    ∵平行四边形ADOE,
    ∴OD∥AE,AE=OD.
    ∴AE=OB.
    ∴四边形AOBE为平行四边形.
    ∵OA=OB,
    ∴四边形AOBE为菱形.
    (2)解:∵菱形AOBE,
    ∴∠EAB=∠BAO.
    ∵矩形ABCD,
    ∴AB∥CD.
    ∴∠BAC=∠ACD,∠ADC=90°.
    ∴∠EAB=∠BAO=∠DCA.
    ∵∠EAO+∠DCO=180°,
    ∴∠DCA=60°.
    ∵DC=2,
    ∴AD=.
    ∴SΔADC=.
    ∴S四边形ADOE =.
    【点睛】
    考查平行四边形的判定与性质,矩形的性质,菱形的判定与性质,解直角三角形,综合性比较强.
    18、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.
    【解析】
    (1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;
    (2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.
    【详解】
    (1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,
    依题意有 ,
    解得:x=30,
    经检验,x=30是原方程的解,
    x+10=30+10=40,
    答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;
    (2)设他们可购买y棵乙种树苗,依题意有
    30×(1﹣10%)(50﹣y)+40y≤1500,
    解得y≤11,
    ∵y为整数,
    ∴y最大为11,
    答:他们最多可购买11棵乙种树苗.
    【点睛】
    本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.
    19、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.
    【解析】
    试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.
    试题解析:(1)2÷0.04=50
    (2)50×0.32=16 14÷50=0.28
    (3)
    (4)(0.32+0.16)×100%=48%
    考点:频数分布直方图
    20、,1
    【解析】
    先通分得到,再根据平方差公式和完全平方公式得到,化简后代入a=3,计算即可得到答案.
    【详解】
    原式===,
    当a=3时(a≠﹣1,0),原式=1.
    【点睛】
    本题考查代数式的化简、平方差公式和完全平方公式,解题的关键是掌握代数式的化简、平方差公式和完全平方公式.
    21、(1)BC=2;(2)见解析
    【解析】
    试题分析:(1)连接OB,根据已知条件判定△OBC的等边三角形,则BC=OC=2;
    (2)欲证明PB是⊙O的切线,只需证得OB⊥PB即可.
    (1)解:如图,连接OB.
    ∵AB⊥OC,∠AOC=60°,
    ∴∠OAB=30°,
    ∵OB=OA,
    ∴∠OBA=∠OAB=30°,
    ∴∠BOC=60°,
    ∵OB=OC,
    ∴△OBC的等边三角形,
    ∴BC=OC.
    又OC=2,
    ∴BC=2;
    (2)证明:由(1)知,△OBC的等边三角形,则∠COB=60°,BC=OC.
    ∵OC=CP,
    ∴BC=PC,
    ∴∠P=∠CBP.
    又∵∠OCB=60°,∠OCB=2∠P,
    ∴∠P=30°,
    ∴∠OBP=90°,即OB⊥PB.
    又∵OB是半径,
    ∴PB是⊙O的切线.

    考点:切线的判定.
    22、答案见解析
    【解析】
    利用已知条件容易证明△ADE≌△CFE,得出角相等,然后利用平行线的判定可以证明FC∥AB.
    【详解】
    解:∵E是AC的中点,∴AE=CE.
    在△ADE与△CFE中,∵AE=EC,∠AED=∠CEF,DE=EF,∴△ADE≌△CFE(SAS),∴∠EAD=∠ECF,∴FC∥AB.
    【点睛】
    本题主要考查了全等三角形的性质与判定,平行线的判定定理.通过全等得角相等,然后得到两线平行时一种常用的方法,应注意掌握运用.
    23、吉普车的速度为30千米/时.
    【解析】
    先设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时,列出方程求出x的值,再进行检验,即可求出答案.
    【详解】
    解:设抢修车的速度为x千米/时,则吉普车的速度为15x千米/时.
    由题意得:.
    解得,x=20
    经检验,x=20是原方程的解,并且x=20,1.5x=30都符合题意.
    答:吉普车的速度为30千米/时.
    点评:本题难度中等,主要考查学生对分式方程实际应用的综合运用.为中考常见题型,要求学生牢固掌握.注意检验.
    24、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.
    【解析】
    (1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;
    (2)设购买A型公交车a辆,则B型公交车(10-a)辆,由“购买A型和B型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.
    【详解】
    (1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得

    解得,
    答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
    (2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得

    解得:,
    因为a是整数,
    所以a=6,7,8;
    则(10﹣a)=4,3,2;
    三种方案:
    ①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;
    ②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;
    ③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;
    购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.
    【点睛】
    此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.

    相关试卷

    山东省部分县重点中学2021-2022学年中考适应性考试数学试题含解析: 这是一份山东省部分县重点中学2021-2022学年中考适应性考试数学试题含解析,共22页。试卷主要包含了估计介于等内容,欢迎下载使用。

    甘肃省渭源县重点中学2021-2022学年中考适应性考试数学试题含解析: 这是一份甘肃省渭源县重点中学2021-2022学年中考适应性考试数学试题含解析,共18页。试卷主要包含了分式有意义,则x的取值范围是,的相反数是,计算的结果是等内容,欢迎下载使用。

    2022届宁夏银川市唐徕回民中学中考适应性考试数学试题含解析: 这是一份2022届宁夏银川市唐徕回民中学中考适应性考试数学试题含解析,共16页。试卷主要包含了估计介于等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map