浙江省嘉兴市秀洲外国语校2022年中考一模数学试题含解析
展开
这是一份浙江省嘉兴市秀洲外国语校2022年中考一模数学试题含解析,共20页。试卷主要包含了答题时请按要求用笔,对于数据等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如果与互补,与互余,则与的关系是( )
A. B.
C. D.以上都不对
2.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,的长为,则图中阴影部分的面积为( )
A. B. C. D.
3.从标号分别为1,2,3,4,5的5张卡片中随机抽取1张,下列事件中不可能事件是( )
A.标号是2 B.标号小于6 C.标号为6 D.标号为偶数
4.下列运算正确的是( )
A.﹣3a+a=﹣4a B.3x2•2x=6x2
C.4a2﹣5a2=a2 D.(2x3)2÷2x2=2x4
5.下列图形中是轴对称图形但不是中心对称图形的是( )
A. B. C. D.
6.下表是某校合唱团成员的年龄分布,对于不同的x,下列关于年龄的统计量不会发生改变的是( )
年龄/岁
13
14
15
16
频数
5
15
x
10- x
A.平均数、中位数 B.众数、方差 C.平均数、方差 D.众数、中位数
7.对于数据:6,3,4,7,6,0,1.下列判断中正确的是( )
A.这组数据的平均数是6,中位数是6 B.这组数据的平均数是6,中位数是7
C.这组数据的平均数是5,中位数是6 D.这组数据的平均数是5,中位数是7
8.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?( )
A.在A的左边 B.介于A、B之间
C.介于B、C之间 D.在C的右边
9.如图,已知射线OM,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,那么∠AOB的度数是( )
A.90° B.60° C.45° D.30°
10.如图,在中,,分别以点和点为圆心,以大于的长为半径作弧,两弧相交于点和点,作直线交于点,交于点,连接.若,则的度数是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.因式分解:_______________________.
12.一次函数y=(k﹣3)x﹣k+2的图象经过第一、三、四象限.则k的取值范围是_____.
13.一个斜面的坡度i=1:0.75,如果一个物体从斜面的底部沿着斜面方向前进了20米,那么这个物体在水平方向上前进了_____米.
14.如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S△PAB=S矩形ABCD,则点P到A、B两点的距离之和PA+PB的最小值为______.
15.计算:+=______.
16.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B,C重合),∠ADE=∠B=∠α,DE交AB于点E,且tan∠α=,有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或;④0<BE≤,其中正确的结论是 ________(填入正确结论的序号).
三、解答题(共8题,共72分)
17.(8分)数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.
补全条形统计图,并估计我校初三年级体重介于47kg至53kg的学生大约有多少名.
18.(8分)动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.
(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为 ;
(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.
19.(8分)如图,点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD,求证:AE=FC.
20.(8分)在某校举办的 2012 年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品 200 个以上可以按折扣价出售;购买 200 个以下(包括 200 个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要 1050 元;若多买 35 个,则按折扣价付款,恰好共需 1050 元.设小王按原计划购买纪念品 x 个.
(1)求 x 的范围;
(2)如果按原价购买 5 个纪念品与按打折价购买 6 个纪念品的钱数相同,那么小王原计划购买多少个纪念品?
21.(8分)如图,正方形ABCD中,BD为对角线.
(1)尺规作图:作CD边的垂直平分线EF,交CD于点E,交BD于点F(保留作图痕迹,不要求写作法);
(2)在(1)的条件下,若AB=4,求△DEF的周长.
22.(10分)(1)计算:(﹣2)﹣2+cos60°﹣(﹣2)0;
(2)化简:(a﹣)÷ .
23.(12分)一天,小华和小夏玩掷骰子游戏,他们约定:他们用同一枚质地均匀的骰子各掷一次, 如果两次掷的骰子的点数相同则小华获胜:如果两次掷的骰子的点数的和是6则小夏获胜.
(1)请您列表或画树状图列举出所有可能出现的结果;
(2)请你判断这个游戏对他们是否公平并说明理由.
24.已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.求证:△ADE≌△CBF;若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据∠1与∠2互补,∠2与∠1互余,先把∠1、∠1都用∠2来表示,再进行运算.
【详解】
∵∠1+∠2=180°
∴∠1=180°-∠2
又∵∠2+∠1=90°
∴∠1=90°-∠2
∴∠1-∠1=90°,即∠1=90°+∠1.
故选C.
【点睛】
此题主要记住互为余角的两个角的和为90°,互为补角的两个角的和为180度.
2、D
【解析】
连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角∠BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S△ABC﹣S扇形BOE,然后分别求出面积相减即可得出答案.
【详解】
解:连接BD,BE,BO,EO,
∵B,E是半圆弧的三等分点,
∴∠EOA=∠EOB=∠BOD=60°,
∴∠BAD=∠EBA=30°,
∴BE∥AD,
∵ 的长为 ,
∴
解得:R=4,
∴AB=ADcos30°= ,
∴BC=AB=,
∴AC=BC=6,
∴S△ABC=×BC×AC=××6=,
∵△BOE和△ABE同底等高,
∴△BOE和△ABE面积相等,
∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=
故选:D.
【点睛】
本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.
3、C
【解析】
利用随机事件以及必然事件和不可能事件的定义依次分析即可解答.
【详解】
选项A、标号是2是随机事件;
选项B、该卡标号小于6是必然事件;
选项C、标号为6是不可能事件;
选项D、该卡标号是偶数是随机事件;
故选C.
【点睛】
本题考查了随机事件以及必然事件和不可能事件的定义,正确把握相关定义是解题关键.
4、D
【解析】
根据合并同类项、单项式的乘法、积的乘方和单项式的乘法逐项计算,结合排除法即可得出答案.
【详解】
A. ﹣3a+a=﹣2a,故不正确;
B. 3x2•2x=6x3,故不正确;
C. 4a2﹣5a2=-a2 ,故不正确;
D. (2x3)2÷2x2=4x6÷2x2=2x4,故正确;
故选D.
【点睛】
本题考查了合并同类项、单项式的乘法、积的乘方和单项式的乘法,熟练掌握它们的运算法则是解答本题的关键.
5、C
【解析】
分析:根据轴对称图形与中心对称图形的概念求解.
详解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;
B、是轴对称图形,也是中心对称图形,故此选项错误;
C、是轴对称图形,不是中心对称图形,故此选项正确;
D、不是轴对称图形,也不是中心对称图形,故此选项错误.
故选:C.
点睛:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
6、D
【解析】
由表易得x+(10-x)=10,所以总人数不变,14岁的人最多,众数不变,中位数也可以确定.
【详解】
∵年龄为15岁和16岁的同学人数之和为:x+(10-x)=10,
∴由表中数据可知人数最多的是年龄为14岁的,共有15人,合唱团总人数为30人,
∴合唱团成员的年龄的中位数是14,众数也是14,这两个统计量不会随着x的变化而变化.
故选D.
7、C
【解析】
根据题目中的数据可以按照从小到大的顺序排列,从而可以求得这组数据的平均数和中位数.
【详解】
对于数据:6,3,4,7,6,0,1,
这组数据按照从小到大排列是:0,3,4,6,6,7,1,
这组数据的平均数是: 中位数是6,
故选C.
【点睛】
本题考查了平均数、中位数的求法,解决本题的关键是明确它们的意义才会计算,求平均数是用一组数据的和除以这组数据的个数;中位数的求法分两种情况:把一组数据从小到大排成一列, 正中间如果是一个数,这个数就是中位数,如果正中间是两个数,那中位数是这两个数的平均数.
8、C
【解析】
分析:由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为1、1,即可得出a=±1、b=±1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论.
解析:∵|a﹣b|=3,|b﹣c|=5,
∴b=a+3,c=b+5,
∵原点O与A、B的距离分别为1、1,
∴a=±1,b=±1,
∵b=a+3,
∴a=﹣1,b=﹣1,
∵c=b+5,
∴c=1.
∴点O介于B、C点之间.
故选C.
点睛:本题考查了数值以及绝对值,解题的关键是确定a、b、c的值.本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键.
9、B
【解析】
首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.
【详解】
连接AB,
根据题意得:OB=OA=AB,
∴△AOB是等边三角形,
∴∠AOB=60°.
故答案选:B.
【点睛】
本题考查了等边三角形的判定与性质,解题的关键是熟练的掌握等边三角形的判定与性质.
10、B
【解析】
根据题意可知DE是AC的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性质即可求出∠CDA的度数.
【详解】
解:∵DE是AC的垂直平分线,
∴DA=DC,
∴∠DCE=∠A,
∵∠ACB=90°,∠B=34°,
∴∠A=56°,
∴∠CDA=∠DCE+∠A=112°,
故选B.
【点睛】
本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
先提公因式,再用平方差公式分解.
【详解】
解:
【点睛】
本题考查因式分解,掌握因式分解方法是关键.
12、k>3
【解析】
分析:根据函数图象所经过的象限列出不等式组通过解该不等式组可以求得k的取值范围.
详解:∵一次函教y=(k−3)x−k+2的图象经过第一、三、四象限,
∴
解得,k>3.
故答案是:k>3.
点睛:此题主要考查了一次函数图象,一次函数的图象有四种情况:
①当时,函数的图象经过第一、二、三象限;
②当时,函数的图象经过第一、三、四象限;
③当时,函数的图象经过第一、二、四象限;
④当时,函数的图象经过第二、三、四象限.
13、1.
【解析】
直接根据题意得出直角边的比值,即可表示出各边长进而得出答案.
【详解】
如图所示:
∵坡度i=1:0.75,
∴AC:BC=1:0.75=4:3,
∴设AC=4x,则BC=3x,
∴AB==5x,
∵AB=20m,
∴5x=20,
解得:x=4,
故3x=1,
故这个物体在水平方向上前进了1m.
故答案为:1.
【点睛】
此题主要考查坡度的运用,需注意的是坡度是坡角的正切值,是铅直高度h和水平宽l的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是.
14、4
【解析】
分析:首先由S△PAB=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.
详解:设△ABP中AB边上的高是h.
∵S△PAB=S矩形ABCD,
∴AB•h=AB•AD,
∴h=AD=2,
∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.
在Rt△ABE中,∵AB=4,AE=2+2=4,
∴BE=,
即PA+PB的最小值为4.
故答案为4.
点睛:本题考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.
15、1.
【解析】
利用同分母分式加法法则进行计算,分母不变,分子相加.
【详解】
解:原式=.
【点睛】
本题考查同分母分式的加法,掌握法则正确计算是本题的解题关键.
16、②③.
【解析】
试题解析:①∵∠ADE=∠B,∠DAE=∠BAD,
∴△ADE∽△ABD;
故①错误;
②作AG⊥BC于G,
∵∠ADE=∠B=α,tan∠α=,
∴,
∴,
∴cosα=,
∵AB=AC=15,
∴BG=1,
∴BC=24,
∵CD=9,
∴BD=15,
∴AC=BD.
∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,
∴∠EDB=∠DAC,
在△ACD与△DBE中,
,
∴△ACD≌△BDE(ASA).
故②正确;
③当∠BED=90°时,由①可知:△ADE∽△ABD,
∴∠ADB=∠AED,
∵∠BED=90°,
∴∠ADB=90°,
即AD⊥BC,
∵AB=AC,
∴BD=CD,
∴∠ADE=∠B=α且tan∠α=,AB=15,
∴
∴BD=1.
当∠BDE=90°时,易证△BDE∽△CAD,
∵∠BDE=90°,
∴∠CAD=90°,
∵∠C=α且cosα=,AC=15,
∴cosC=,
∴CD=.
∵BC=24,
∴BD=24-=
即当△DCE为直角三角形时,BD=1或.
故③正确;
④易证得△BDE∽△CAD,由②可知BC=24,
设CD=y,BE=x,
∴,
∴,
整理得:y2-24y+144=144-15x,
即(y-1)2=144-15x,
∴0<x≤,
∴0<BE≤.
故④错误.
故正确的结论为:②③.
考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质.
三、解答题(共8题,共72分)
17、576名
【解析】
试题分析:根据统计图可以求得本次调查的人数和体重落在B组的人数,从而可以将条形统计图补充完整,进而可以求得我校初三年级体重介于47kg至53kg的学生大约有多少名.
试题解析:
本次调查的学生有:32÷16%=200(名),
体重在B组的学生有:200﹣16﹣48﹣40﹣32=64(名),
补全的条形统计图如右图所示,
我校初三年级体重介于47kg至53kg的学生大约有:1800×=576(名),
答:我校初三年级体重介于47kg至53kg的学生大约有576名.
18、(1);(2)
【解析】
(1)直接利用求概率公式计算即可;(2)画树状图(或列表格)列出所有等可能结果,根据概率公式即可解答.
【详解】
(1);
(2)方法1:根据题意可画树状图如下: 方法2:根据题意可列表格如下:
弟弟
姐姐
A
B
C
D
A
(A,B)
(A,C)
(A,D)
B
(B,A)
(B,C)
(B,D)
C
(C,A)
(C,B)
(C,D)
D
(D,A)
(D,B)
(D,C)
由列表(树状图)可知,总共有12种结果,每种结果出现的可能性相同,其中姐姐抽到A佩奇,弟弟抽到B乔治的结果有1种:(A,B).
∴P(姐姐抽到A佩奇,弟弟抽到B乔治)
【点睛】
本题考查的是用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解决问题用到概率公式:概率=所求情况数与总情况数之比.
19、证明见解析.
【解析】
由已知条件BE∥DF,可得出∠ABE=∠D,再利用ASA证明△ABE≌△FDC即可.
证明:∵BE∥DF,∴∠ABE=∠D,
在△ABE和△FDC中,
∠ABE=∠D,AB=FD,∠A=∠F
∴△ABE≌△FDC(ASA),
∴AE=FC.
“点睛”此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证△ABC和△FDC全等.
20、(1)0<x≤200,且 x是整数(2)175
【解析】
(1)根据商场的规定确定出x的范围即可;
(2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.
【详解】
(1)根据题意得:0<x≤200,且x为整数;
(2)设小王原计划购买x个纪念品,
根据题意得:,
整理得:5x+175=6x,
解得:x=175,
经检验x=175是分式方程的解,且满足题意,
则小王原计划购买175个纪念品.
【点睛】
此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.
21、(1)见解析;(2)2+1.
【解析】
分析:(1)、根据中垂线的做法作出图形,得出答案;(2)、根据中垂线和正方形的性质得出DF、DE和EF的长度,从而得出答案.
详解:(1)如图,EF为所作;
(2)解:∵四边形ABCD是正方形,∴∠BDC=15°,CD=BC=1,又∵EF垂直平分CD,
∴∠DEF=90°,∠EDF=∠EFD=15°, DE=EF=CD=2,∴DF=DE=2,
∴△DEF的周长=DF+DE+EF=2+1.
点睛:本题主要考查的是中垂线的性质,属于基础题型.理解中垂线的性质是解题的关键.
22、(1);(2);
【解析】
(1)根据负整数指数幂、特殊角的三角函数值、零指数幂可以解答本题;
(2)根据分式的减法和除法可以解答本题.
【详解】
解:(1)原式
(2)原式
【点睛】
本题考查分式的混合运算、实数的运算、负整数指数幂、特殊角的三角函数值、零指数幂,解答本题的关键是明确它们各自的计算方法.
23、(1)36(2)不公平
【解析】
(1)根据题意列表即可;
(2)根据根据表格可以求得得分情况,比较其大小,即可得出结论.
【详解】
(1)列表得:
(1,6)
(2,6)
(3,6)
(4,6)
(5,6)
(6,6)
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)
(6,5)
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
∴一共有36种等可能的结果,
(2)这个游戏对他们不公平,
理由:由上表可知,所有可能的结果有36种,并且它们出现的可能性相等,
而P(两次掷的骰子的点数相同)
P(两次掷的骰子的点数的和是6)=
∴不公平.
【点睛】
本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等
就公平,否则就不公平.
24、(1)证明见解析(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明见解析;
【解析】
(1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明全等;
(2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD是矩形.
【详解】
解:证明:∵四边形是平行四边形,
∴,,.
∵点、分别是、的中点,
∴,.
∴.
在和中,
,
∴.
解:当四边形是菱形时,四边形是矩形.
证明:∵四边形是平行四边形,
∴.
∵,
∴四边形是平行四边形.
∵四边形是菱形,
∴.
∵,
∴.
∴,.
∵,
∴.
∴.
即.
∴四边形是矩形.
【点睛】
本题主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.三角形全等的判定条件:SSS,SAS,AAS,ASA.
相关试卷
这是一份2023年浙江省嘉兴市上海外国语大学秀洲外国语学校中考数学二模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年浙江省嘉兴市上海外国语大学秀洲外国语学校中考数学二模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年浙江省嘉兴市上海外国语大学秀洲外国语学校中考数学一模试卷,共34页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。