所属成套资源:2021中考数学真题知识点分类汇编
2021中考数学真题知识点分类汇编(含答案)-四边选择题2
展开
这是一份2021中考数学真题知识点分类汇编(含答案)-四边选择题2,共31页。
2021中考数学真题知识点分类汇编-四边选择题2
一.多边形内角与外角(共11小题)
1.(2021•北京)下列多边形中,内角和最大的是( )
A. B. C. D.
2.(2021•济宁)如图,正五边形ABCDE中,∠CAD的度数为( )
A.72° B.45° C.36° D.35°
3.(2021•株洲)如图所示,在正六边形ABCDEF内,以AB为边作正五边形ABGHI,则∠FAI=( )
A.10° B.12° C.14° D.15°
4.(2021•眉山)正八边形中,每个内角与每个外角的度数之比为( )
A.1:3 B.1:2 C.2:1 D.3:1
5.(2021•扬州)如图,点A、B、C、D、E在同一平面内,连接AB、BC、CD、DE、EA,若∠BCD=100°,则∠A+∠B+∠D+∠E=( )
A.220° B.240° C.260° D.280°
6.(2021•云南)一个十边形的内角和等于( )
A.1800° B.1660° C.1440° D.1200°
7.(2021•连云港)正五边形的内角和是( )
A.360° B.540° C.720° D.900°
8.(2021•自贡)如图,AC是正五边形ABCDE的对角线,∠ACD的度数是( )
A.72° B.36° C.74° D.88°
9.(2021•毕节市)若正多边形的一个外角是45°,则该正多边形的内角和为( )
A.540° B.720° C.900° D.1080°
10.(2021•绥化)一个多边形的内角和是外角和的4倍,则这个多边形是( )
A.八边形 B.九边形 C.十边形 D.十二边形
11.(2021•常德)一个多边形的内角和为1800°,则这个多边形的边数为( )
A.9 B.10 C.11 D.12
二.平行四边形的性质(共8小题)
12.(2021•荆门)如图,将一副三角板在平行四边形ABCD中作如下摆放,设∠1=30°,那么∠2=( )
A.55° B.65° C.75° D.85°
13.(2021•恩施州)如图,在▱ABCD中,AB=13,AD=5,AC⊥BC,则▱ABCD的面积为( )
A.30 B.60 C.65 D.
14.(2021•株洲)如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上,若∠DCE=132°,则∠A=( )
A.38° B.48° C.58° D.66°
15.(2021•苏州)如图,在平行四边形ABCD中,将△ABC沿着AC所在的直线折叠得到△AB′C,B′C交AD于点E,连接B′D,若∠B=60°,∠ACB=45°,AC=,则B′D的长是( )
A.1 B. C. D.
16.(2021•天津)如图,▱ABCD的顶点A,B,C的坐标分别是(0,1),(﹣2,﹣2),(2,﹣2),则顶点D的坐标是( )
A.(﹣4,1) B.(4,﹣2) C.(4,1) D.(2,1)
17.(2021•南充)如图,点O是▱ABCD对角线的交点,EF过点O分别交AD,BC于点E,F,下列结论成立的是( )
A.OE=OF B.AE=BF C.∠DOC=∠OCD D.∠CFE=∠DEF
18.(2021•泰安)如图,在平行四边形ABCD中,E是BD的中点,则下列四个结论:
①AM=CN;
②若MD=AM,∠A=90°,则BM=CM;
③若MD=2AM,则S△MNC=S△BNE;
④若AB=MN,则△MFN与△DFC全等.
其中正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
19.(2021•泸州)如图,在▱ABCD中,AE平分∠BAD且交BC于点E,∠D=58°,则∠AEC的大小是( )
A.61° B.109° C.119° D.122°
三.平行四边形的判定(共1小题)
20.(2021•资阳)下列命题正确的是( )
A.每个内角都相等的多边形是正多边形
B.对角线互相平分的四边形是平行四边形
C.过线段中点的直线是线段的垂直平分线
D.三角形的中位线将三角形的面积分成1:2两部分
四.平行四边形的判定与性质(共1小题)
21.(2021•河北)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案( )
A.甲、乙、丙都是 B.只有甲、乙才是
C.只有甲、丙才是 D.只有乙、丙才是
五.菱形的性质(共7小题)
22.(2021•柳州)如图,在菱形ABCD中,对角线AC=8,BD=10,则△AOD的面积为( )
A.9 B.10 C.11 D.12
23.(2021•陕西)如图,在菱形ABCD中,∠ABC=60°,连接AC、BD,则的值为( )
A. B. C. D.
24.(2021•南充)如图,在菱形ABCD中,∠A=60°,点E,F分别在边AB,BC上,AE=BF=2,△DEF的周长为3,则AD的长为( )
A. B.2 C.+1 D.2﹣1
25.(2021•乐山)如图,已知点P是菱形ABCD的对角线AC延长线上一点,过点P分别作AD、DC延长线的垂线,垂足分别为点E、F.若∠ABC=120°,AB=2,则PE﹣PF的值为( )
A. B. C.2 D.
26.(2021•绍兴)如图,菱形ABCD中,∠B=60°,点P从点B出发,沿折线BC﹣CD方向移动,移动到点D停止.在△ABP形状的变化过程中,依次出现的特殊三角形是( )
A.直角三角形→等边三角形→等腰三角形→直角三角形
B.直角三角形→等腰三角形→直角三角形→等边三角形
C.直角三角形→等边三角形→直角三角形→等腰三角形
D.等腰三角形→等边三角形→直角三角形→等腰三角形
27.(2021•成都)如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定△ABE≌△ADF的是( )
A.BE=DF B.∠BAE=∠DAF C.AE=AD D.∠AEB=∠AFD
28.(2021•南通)菱形的两条对角线的长分别是6和8,则这个菱形的周长是( )
A.24 B.20 C.10 D.5
六.菱形的判定(共1小题)
29.(2021•广元)下列命题中,真命题是( )
A.2x﹣1=
B.对角线互相垂直的四边形是菱形
C.顺次连接矩形各边中点的四边形是正方形
D.已知抛物线y=x2﹣4x﹣5,当﹣1<x<5时,y<0
七.菱形的判定与性质(共1小题)
30.(2021•绍兴)数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形纵向排列放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是( )
A.用3个相同的菱形放置,最多能得到6个菱形
B.用4个相同的菱形放置,最多能得到16个菱形
C.用5个相同的菱形放置,最多能得到27个菱形
D.用6个相同的菱形放置,最多能得到41个菱形
八.矩形的性质(共2小题)
31.(2021•宁波)如图是一个由5张纸片拼成的平行四边形ABCD,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张矩形纸片EFGH的面积为S3,FH与GE相交于点O.当△AEO,△BFO,△CGO,△DHO的面积相等时,下列结论一定成立的是( )
A.S1=S2 B.S1=S3 C.AB=AD D.EH=GH
32.(2021•眉山)如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=6,∠DAC=60°,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④点E运动的路程是2,其中正确结论的序号为( )
A.①④ B.①②③ C.②③④ D.①②③④
九.矩形的判定(共1小题)
33.(2021•泸州)下列命题是真命题的是( )
A.对角线相等的四边形是平行四边形
B.对角线互相平分且相等的四边形是矩形
C.对角线互相垂直的四边形是菱形
D.对角线互相垂直平分的四边形是正方形
一十.正方形的性质(共3小题)
34.(2021•常德)如图,已知F、E分别是正方形ABCD的边AB与BC的中点,AE与DF交于P.则下列结论成立的是( )
A.BE=AE B.PC=PD
C.∠EAF+∠AFD=90° D.PE=EC
35.(2021•重庆)如图,正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O作ON⊥OM,交CD于点N.若四边形MOND的面积是1,则AB的长为( )
A.1 B. C.2 D.2
36.(2021•重庆)如图,把含30°的直角三角板PMN放置在正方形ABCD中,∠PMN=30°,直角顶点P在正方形ABCD的对角线BD上,点M,N分别在AB和CD边上,MN与BD交于点O,且点O为MN的中点,则∠AMP的度数为( )
A.60° B.65° C.75° D.80°
一十一.正方形的判定(共1小题)
37.(2021•娄底)如图,点E、F在矩形ABCD的对角线BD所在的直线上,BE=DF,则四边形AECF是( )
A.平行四边形 B.矩形 C.菱形 D.正方形
一十二.*平面向量(共1小题)
38.(2021•上海)如图,在平行四边形ABCD中,已知=,=,E为AB中点,则+=( )
A. B. C. D.
参考答案与试题解析
一.多边形内角与外角(共11小题)
1.(2021•北京)下列多边形中,内角和最大的是( )
A. B. C. D.
【解答】解:A.三角形的内角和为180°;
B.四边形的内角和为360°;
C.五边形的内角和为:(5﹣2)×180°=540°;
D.六边形的内角和为:(6﹣2)×180°=720°;
故选:D.
2.(2021•济宁)如图,正五边形ABCDE中,∠CAD的度数为( )
A.72° B.45° C.36° D.35°
【解答】解:根据正多边形内角和公式可得,
正五边形ABCDE的内角和=180°×(5﹣2)=540°,
则∠BAE=∠B=∠E==108°,
根据正五边形的性质,△ABC≌△AED,
∴∠CAB=∠DAE=(180°﹣108°)=36°,
∴∠CAD=108°﹣36°﹣36°=36°,
故选:C.
3.(2021•株洲)如图所示,在正六边形ABCDEF内,以AB为边作正五边形ABGHI,则∠FAI=( )
A.10° B.12° C.14° D.15°
【解答】解:在正六边形ABCDEF内,正五边形ABGHI中,∠FAB=120°,∠IAB=108°,
∴∠FAI=∠FAB﹣∠IAB=120°﹣108°=12°,
故选:B.
4.(2021•眉山)正八边形中,每个内角与每个外角的度数之比为( )
A.1:3 B.1:2 C.2:1 D.3:1
【解答】解:这个八边形的内角和为:
(8﹣2)×180°=1080°;
这个八边形的每个内角的度数为:
1080°÷8=135°;
这个八边形的每个外角的度数为:
360°÷8=45°;
∴这个八边形每个内角与每个外角的度数之比为:
135:45=3:1.
故选:D.
5.(2021•扬州)如图,点A、B、C、D、E在同一平面内,连接AB、BC、CD、DE、EA,若∠BCD=100°,则∠A+∠B+∠D+∠E=( )
A.220° B.240° C.260° D.280°
【解答】解:连接BD,
∵∠BCD=100°,
∴∠CBD+∠CDB=180°﹣100°=80°,
∴∠A+∠ABC+∠E+∠CDE=360°﹣∠CBD﹣∠CDB=360°﹣80°=280°,
故选:D.
6.(2021•云南)一个十边形的内角和等于( )
A.1800° B.1660° C.1440° D.1200°
【解答】解:根据多边形内角和公式得,
十边形的内角和等于:(10﹣2)×180°=8×180°=1440°,
故选:C.
7.(2021•连云港)正五边形的内角和是( )
A.360° B.540° C.720° D.900°
【解答】解:正五边形的内角和是:(5﹣2)×180°=3×180°=540°,
故选:B.
8.(2021•自贡)如图,AC是正五边形ABCDE的对角线,∠ACD的度数是( )
A.72° B.36° C.74° D.88°
【解答】解:在五边形ABCDE中,
每个内角为180°﹣360°÷5=108°,
∵AB=BC,
∴∠BCA=∠BAC==36°,
∴∠ACD=∠BCD﹣∠BCA=108°﹣36°=72°,
故选:A.
9.(2021•毕节市)若正多边形的一个外角是45°,则该正多边形的内角和为( )
A.540° B.720° C.900° D.1080°
【解答】解:正多边形的边数为:360°÷45°=8,
∴这个多边形是正八边形,
∴该多边形的内角和为(8﹣2)×180°=1080°.
故选:D.
10.(2021•绥化)一个多边形的内角和是外角和的4倍,则这个多边形是( )
A.八边形 B.九边形 C.十边形 D.十二边形
【解答】解:设这个多边形的边数为n,则该多边形的内角和为(n﹣2)×180°,
依题意得(n﹣2)×180°=360°×4,
解得n=10,
∴这个多边形是十边形.
故选:C.
11.(2021•常德)一个多边形的内角和为1800°,则这个多边形的边数为( )
A.9 B.10 C.11 D.12
【解答】解:根据题意得:
(n﹣2)180=1800,
解得:n=12.
故选:D.
二.平行四边形的性质(共8小题)
12.(2021•荆门)如图,将一副三角板在平行四边形ABCD中作如下摆放,设∠1=30°,那么∠2=( )
A.55° B.65° C.75° D.85°
【解答】解:延长EH交AB于N,
∵△EFH是等腰直角三角形,
∴∠FHE=45°,
∴∠NHB=∠FHE=45°,
∵∠1=30°,
∴∠HNB=180°﹣∠1﹣∠NHB=105°,
∵四边形ABCD是平行四边形,
∴CD∥AB,
∴∠2+∠HNB=180°,
∴∠2=75°,
故选:C.
13.(2021•恩施州)如图,在▱ABCD中,AB=13,AD=5,AC⊥BC,则▱ABCD的面积为( )
A.30 B.60 C.65 D.
【解答】解:∵四边形ABCD为平行四边形,
∴BC=AD=5.
∵AC⊥BC,
∴△ACB是直角三角形.
∴AC===12.
∴S▱ABCD=BC•AC=5×12=60.
故选:B.
14.(2021•株洲)如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上,若∠DCE=132°,则∠A=( )
A.38° B.48° C.58° D.66°
【解答】解:∵∠DCE=132°,
∴∠DCB=180°﹣∠DCE=180°﹣132°=48°,
∵四边形ABCD是平行四边形,
∴∠A=∠DCB=48°,
故选:B.
15.(2021•苏州)如图,在平行四边形ABCD中,将△ABC沿着AC所在的直线折叠得到△AB′C,B′C交AD于点E,连接B′D,若∠B=60°,∠ACB=45°,AC=,则B′D的长是( )
A.1 B. C. D.
【解答】解:∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,∠ADC=60°,
∴∠CAE=∠ACB=45°,
∵将△ABC沿AC翻折至△AB′C,
∴∠ACB′=∠ACB=45°,∠AB′C=∠B=60°,
∴∠AEC=180°﹣∠CAE﹣∠ACB′=90°,
∴AE=CE=AC=,
∵∠AEC=90°,∠AB′C=60°,∠ADC=60°,
∴∠B′AD=30°,∠DCE=30°,
∴B′E=DE=1,
∴B′D==.
故选:B.
16.(2021•天津)如图,▱ABCD的顶点A,B,C的坐标分别是(0,1),(﹣2,﹣2),(2,﹣2),则顶点D的坐标是( )
A.(﹣4,1) B.(4,﹣2) C.(4,1) D.(2,1)
【解答】解:∵B,C的坐标分别是(﹣2,﹣2),(2,﹣2),
∴BC=2﹣(﹣2)=2+2=4,
∵四边形ABCD是平行四边形,
∴AD=BC=4,
∵点A的坐标为(0,1),
∴点D的坐标为(4,1),
故选:C.
17.(2021•南充)如图,点O是▱ABCD对角线的交点,EF过点O分别交AD,BC于点E,F,下列结论成立的是( )
A.OE=OF B.AE=BF C.∠DOC=∠OCD D.∠CFE=∠DEF
【解答】解:∵▱ABCD的对角线AC,BD交于点O,
∴AO=CO,BO=DO,AD∥BC,
∴∠EAO=∠FCO,
在△AOE和△COF中,
,
∴△AOE≌△COF(ASA),
∴OE=OF,AE=CF,∠CFE=∠AEF,
又∵∠DOC=∠BOA,
∴选项A成立,选项B、C、D不一定成立,
故选:A.
18.(2021•泰安)如图,在平行四边形ABCD中,E是BD的中点,则下列四个结论:
①AM=CN;
②若MD=AM,∠A=90°,则BM=CM;
③若MD=2AM,则S△MNC=S△BNE;
④若AB=MN,则△MFN与△DFC全等.
其中正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
【解答】解:①∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠ADB=∠CBD,
∵E是BD的中点,
∴BE=DE,
在△MDE和△NBE中,
,
∴△MDE≌△NBE(ASA),
∴DM=BN,
∴AM=CN,
故①正确;
②若MD=AM,∠A=90°,
则平行四边形ABCD为矩形,
∴∠ADC=∠A=90°,
在△BAM和△CDM中,
,
∴△BAM≌△CDM(SAS),
∴BM=CM,
故②正确;
③过点M作MG⊥BC,交BC于G,过点E作EH⊥BC,交BC于H,
由①易得四边形MBND是平行四边形,E为BD中点,
∴MG=2EH,
又∵MD=2AM,BN=MD,AM=NC,
∴S△MNC=NC•MG=•BN•2EH=BN•EH=S△BNE,
故③正确;
④∵AB=MN,AB=DC,
∴MN=DC,
又∵AD∥BC,
∴四边形MNCD是等腰梯形或平行四边形,
如果四边形MNCD是等腰梯形,
∴∠MNC=∠DCN,
在△MNC和△DCN中,
,
∴△MNC≌△DCN(SAS),
∴∠NMC=∠CDN,
在△MFN和△DFC中,
,
∴△MFN≌△DFC(AAS),
如果是平行四边形,由平行四边形的性质可以得到△MFN≌△DFC,
故④正确.
∴正确的个数是4个,
故选:D.
19.(2021•泸州)如图,在▱ABCD中,AE平分∠BAD且交BC于点E,∠D=58°,则∠AEC的大小是( )
A.61° B.109° C.119° D.122°
【解答】解:∵四边形ABCD是平行四边形,∠D=58°,
∴∠BAD=122°,∠B=∠D=58°,
∵AE平分∠BAD,
∴∠BAE=61°,
∴∠AEC=∠B+∠BAE=119°,
故选:C.
三.平行四边形的判定(共1小题)
20.(2021•资阳)下列命题正确的是( )
A.每个内角都相等的多边形是正多边形
B.对角线互相平分的四边形是平行四边形
C.过线段中点的直线是线段的垂直平分线
D.三角形的中位线将三角形的面积分成1:2两部分
【解答】解:A、每条边、每个内角都相等的多边形是正多边形,故A选项说法错误,是假命题;
B、对角线互相平分的四边形是平行四边形,故B选项说法正确,是真命题;
C、过线段中点,并且垂直于这条线段的直线是线段的垂直平分线,故C选项说法错误,是假命题;
D、三角形的中位线将三角形的面积分成1:3两部分,故D选项说法错误,是假命题.
(∵DE是△ABC的中位线,
∴DE∥BC,DE=BC,
∴△ADE∽△ABC,相似比为1:2,
∴S△ADE:S△ABC=1:4,
∴S△ADE:S四边形DECB=1:3.)
故选:B.
四.平行四边形的判定与性质(共1小题)
21.(2021•河北)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案( )
A.甲、乙、丙都是 B.只有甲、乙才是
C.只有甲、丙才是 D.只有乙、丙才是
【解答】解:方案甲中,连接AC,如图所示:
∵四边形ABCD是平行四边形,O为BD的中点,
∴OB=OD,OA=OC,
∵BN=NO,OM=MD,
∴NO=OM,
∴四边形ANCM为平行四边形,方案甲正确;
方案乙中:
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠ABN=∠CDM,
∵AN⊥BD,CM⊥BD,
∴AN∥CM,∠ANB=∠CMD,
在△ABN和△CDM中,
,
∴△ABN≌△CDM(AAS),
∴AN=CM,
又∵AN∥CM,
∴四边形ANCM为平行四边形,方案乙正确;
方案丙中:∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD,AB=CD,AB∥CD,
∴∠ABN=∠CDM,
∵AN平分∠BAD,CM平分∠BCD,
∴∠BAN=∠DCM,
在△ABN和△CDM中,
,
∴△ABN≌△CDM(ASA),
∴AN=CM,∠ANB=∠CMD,
∴∠ANM=∠CMN,
∴AN∥CM,
∴四边形ANCM为平行四边形,方案丙正确;
故选:A.
五.菱形的性质(共7小题)
22.(2021•柳州)如图,在菱形ABCD中,对角线AC=8,BD=10,则△AOD的面积为( )
A.9 B.10 C.11 D.12
【解答】解:∵四边形ABCD是菱形,
∴AD=CD=BC=AB,AC⊥BD,AO=CO,DO=BO,
∴∠AOD=∠COD=∠BOC=∠AOB=90°,
∴Rt△AOD≌Rt△COD≌Rt△BOC≌Rt△AOB(HL),即四个三角形的面积相等,
∵在菱形ABCD中,对角线AC=8,BD=10,
∴菱形ABCD的面积为:AC•BD=40.
∴△AOD的面积为:40=10.
故选:B.
23.(2021•陕西)如图,在菱形ABCD中,∠ABC=60°,连接AC、BD,则的值为( )
A. B. C. D.
【解答】解:设AC与BD交于点O,
∵四边形ABCD是菱形,
∴AO=CO,BO=DO,AC⊥BD,∠ABD=∠ABC=30°,
∵tan∠ABD=,
∴,
故选:D.
24.(2021•南充)如图,在菱形ABCD中,∠A=60°,点E,F分别在边AB,BC上,AE=BF=2,△DEF的周长为3,则AD的长为( )
A. B.2 C.+1 D.2﹣1
【解答】解:如图,连结BD,作DH⊥AB,垂足为H,
∵四边形ABCD是菱形,
∴AB=AD,AD∥BC,
∵∠A=60°,
∴△ABD是等边三角形,∠ABC=180°﹣∠A=120°,
∴AD=BD,∠ABD=∠A=∠ADB=60°,
∴∠DBC=∠ABC﹣∠ABD=120°﹣60°=60°,
∵AE=BF,
∴△ADE≌△BDF(SAS),
∴DE=DF,∠ADE=∠FDB,
∴∠EDF=∠EDB+∠FDB=∠EDB+∠ADE=∠ADB=60°,
∴△DEF是等边三角形,
∵△DEF的周长是3,
∴DE=,
设AH=x,则HE=2﹣x,
∵AD=BD,DH⊥AB,
∴∠ADH=∠ADB=30°,
∴AD=2x,DH=x,
在Rt△DHE中,DH²+HE²=DE²,
∴(x)²+(2﹣x)²=()²,
解得:x=(负值舍去),
∴AD=2x=1+,
方法二:过点E作EH⊥AD于H.
故选:C.
25.(2021•乐山)如图,已知点P是菱形ABCD的对角线AC延长线上一点,过点P分别作AD、DC延长线的垂线,垂足分别为点E、F.若∠ABC=120°,AB=2,则PE﹣PF的值为( )
A. B. C.2 D.
【解答】解:设AC交BD于O,如图:
∵在菱形ABCD中,∠ABC=120°,AB=2,
∴∠BAD=∠BCD=60°,∠DAC=∠DCA=30°,AD=AB=2,BD⊥AC,
Rt△AOD中,OD=AD=1,OA==,
∴AC=2OA=2,
Rt△APE中,∠DAC=30°,PE=AP,
Rt△CPF中,∠PCF=∠DCA=30°,PF=CP,
∴PE﹣PF=AP﹣CP=(AP﹣CP)=AC,
∴PE﹣PF=,
故选:B.
26.(2021•绍兴)如图,菱形ABCD中,∠B=60°,点P从点B出发,沿折线BC﹣CD方向移动,移动到点D停止.在△ABP形状的变化过程中,依次出现的特殊三角形是( )
A.直角三角形→等边三角形→等腰三角形→直角三角形
B.直角三角形→等腰三角形→直角三角形→等边三角形
C.直角三角形→等边三角形→直角三角形→等腰三角形
D.等腰三角形→等边三角形→直角三角形→等腰三角形
【解答】解:∵∠B=60°,故菱形由两个等边三角形组合而成,
当AP⊥BC时,此时△ABP为直角三角形;
当点P到达点C处时,此时△ABP为等边三角形;
当P为CD中点时,△ABP为直角三角形;
当点P与点D重合时,此时△ABP为等腰三角形,
故选:C.
27.(2021•成都)如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定△ABE≌△ADF的是( )
A.BE=DF B.∠BAE=∠DAF C.AE=AD D.∠AEB=∠AFD
【解答】解:由四边形ABCD是菱形可得:AB=AD,∠B=∠D,
A、添加BE=DF,可用SAS证明△ABE≌△ADF,故不符合题意;
B、添加∠BAE=∠DAF,可用ASA证明△ABE≌△ADF,故不符合题意;
C、添加AE=AD,不能证明△ABE≌△ADF,故符合题意;
D、添加∠AEB=∠AFD,可用AAS证明△ABE≌△ADF,故不符合题意;
故选:C.
28.(2021•南通)菱形的两条对角线的长分别是6和8,则这个菱形的周长是( )
A.24 B.20 C.10 D.5
【解答】解:如图所示,
根据题意得AO=×6=3,BO=×8=4,
∵四边形ABCD是菱形,
∴AB=BC=CD=DA,AC⊥BD,
∴△AOB是直角三角形,
∴AB==5,
∴此菱形的周长为:5×4=20.
故选:B.
六.菱形的判定(共1小题)
29.(2021•广元)下列命题中,真命题是( )
A.2x﹣1=
B.对角线互相垂直的四边形是菱形
C.顺次连接矩形各边中点的四边形是正方形
D.已知抛物线y=x2﹣4x﹣5,当﹣1<x<5时,y<0
【解答】解:A、∵2x﹣1=,
∴选项A不符合题意;
B、∵对角线互相垂直的平行四边形是菱形(菱形的判定定理),
∴选项B不符合题意;
C、顺次连接矩形各边中点的四边形是菱形,理由如下:
在矩形ABCD中,连接AC、BD,如图:
∵四边形ABCD为矩形,
∴AC=BD,
∵AH=HD,AE=EB,
∴EH是△ABD的中位线,
∴EH=BD,
同理,FG=BD,HG=AC,EF=AC,
∴EH=HG=GF=FE,
∴四边形EFGH为菱形,
∴选项C不符合题意;
D、∵抛物线y=x2﹣4x﹣5的开口向上,与x轴的两个交点为(﹣1,0)、(5,0),
∴当﹣1<x<5时,y<0,
∴选项D符合题意;
故选:D.
七.菱形的判定与性质(共1小题)
30.(2021•绍兴)数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形纵向排列放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是( )
A.用3个相同的菱形放置,最多能得到6个菱形
B.用4个相同的菱形放置,最多能得到16个菱形
C.用5个相同的菱形放置,最多能得到27个菱形
D.用6个相同的菱形放置,最多能得到41个菱形
【解答】解:如图所示,
用2个相同的菱形放置,最多能得到3个菱形;
用3个相同的菱形放置,最多能得到8个菱形,
用4个相同的菱形放置,最多能得到16个菱形,
用5个相同的菱形放置,最多能得到29个菱形,
用6个相同的菱形放置,最多能得到47个菱形.
故选:B.
八.矩形的性质(共2小题)
31.(2021•宁波)如图是一个由5张纸片拼成的平行四边形ABCD,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张矩形纸片EFGH的面积为S3,FH与GE相交于点O.当△AEO,△BFO,△CGO,△DHO的面积相等时,下列结论一定成立的是( )
A.S1=S2 B.S1=S3 C.AB=AD D.EH=GH
【解答】解:如图,连接DG,AH,过点O作OJ⊥DE于J.
∵四边形EFGH是矩形,
∴OH=OF,EF=GH,∠HEF=90°,
∵OJ⊥DE,
∴∠OJH=∠HEF=90°,
∴OJ∥EF,
∵HO=OF,
∴HJ=JE,
∴EF=GH=2OJ,
∵S△DHO=•DH•OJ,S△DHG=•DH•GH,
∴S△DGH=2S△DHO,
同法可证S△AEH=2S△AEO,
∵S△DHO=S△AEO,
∴S△DGH=S△AEH,
∵S△DGC=•CG•DH,S△ADH=•DH•AE,CG=AE,
∴S△DGC=S△ADH,
∴S△DHC=S△ADE,
∴S1=S2,
故A选项符合题意;
S3=HE•EF≠S1,
故B选项不符合题意;
AB=AD,EH=GH均不成立,
故C选项,D选项不符合题意,
故选:A.
32.(2021•眉山)如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=6,∠DAC=60°,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④点E运动的路程是2,其中正确结论的序号为( )
A.①④ B.①②③ C.②③④ D.①②③④
【解答】解:①∵∠DAC=60°,OD=OA,
∴△OAD为等边三角形,
∴∠DOA=∠DAO=∠ODA=60°,AD=OD,
∵△DFE为等边三角形,
∴∠EDF=∠EFD=∠DEF=60°,DF=DE,
∵∠BDE+∠FDO=∠ADF+∠FDO=60°,
∴∠BDE=∠ADF,
∵∠ADF+∠AFD+∠DAF=180°,
∴∠ADF+∠AFD=180°﹣∠DAF=120°,
∵∠EFC+∠AFD+∠DFE=180°,
∴∠EFC+∠AFD=180°﹣∠DFE=120°,
∴∠ADF=∠EFC,
∴∠BDE=∠EFC,
故结论①正确;
②如图,连接OE,
在△DAF和△DOE中,
,
∴△DAF≌△DOE(SAS),
∴∠DOE=∠DAF=60°,
∵∠COD=180°﹣∠AOD=120°,
∴∠COE=∠COD﹣∠DOE=120°﹣60°=60°,
∴∠COE=∠DOE,
在△ODE和△OCE中,
,
∴△ODE≌△OCE(SAS),
∴ED=EC,∠OCE=∠ODE,
故结论②正确;
③∵∠ODE=∠ADF,
∴∠ADF=∠OCE,即∠ADF=∠ECF,
故结论③正确;
④如图,延长OE至E′,使OE′=OD,连接DE′,
∵△DAF≌△DOE,∠DOE=60°,
∴点F在线段AO上从点A至点O运动时,点E从点O沿线段OE′运动到E′,
∵OE′=OD=AD=AB•tan∠ABD=6•tan30°=2,
∴点E运动的路程是2,
故结论④正确;
故选:D.
九.矩形的判定(共1小题)
33.(2021•泸州)下列命题是真命题的是( )
A.对角线相等的四边形是平行四边形
B.对角线互相平分且相等的四边形是矩形
C.对角线互相垂直的四边形是菱形
D.对角线互相垂直平分的四边形是正方形
【解答】解:A、对角线互相平分的四边形是平行四边形,对角线相等的四边形也可能是等腰梯形等四边形,故A不符合题意;
B、对角线互相平分的四边形是平行四边形,若对角线再相等,则四边形是矩形,故B符合题意;
C、对角线互相垂直的四边形不能判定是平行四边形,也就不能判定是菱形,故C不符合题意;
D、对角线互相垂直平分的四边形是菱形,不能判断它的内角有直角,故D不符合题意;
故选:B.
一十.正方形的性质(共3小题)
34.(2021•常德)如图,已知F、E分别是正方形ABCD的边AB与BC的中点,AE与DF交于P.则下列结论成立的是( )
A.BE=AE B.PC=PD
C.∠EAF+∠AFD=90° D.PE=EC
【解答】解:∵F、E分别是正方形ABCD的边AB与BC的中点,
∴AF=BE,
在△AFD和△BEA中,
,
∴△AFD≌△BEA(SAS),
∴∠FDA=∠EAB,
又∵∠FDA+∠AFD=90°,
∴∠EAB+∠AFD=90°,
即∠EAF+∠AFD=90°,
故C正确,A、B、D无法证明其成立,
故选:C.
35.(2021•重庆)如图,正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O作ON⊥OM,交CD于点N.若四边形MOND的面积是1,则AB的长为( )
A.1 B. C.2 D.2
【解答】解:∵四边形ABCD是正方形,
∴∠MDO=∠NCO=45°,OD=OC,∠DOC=90°,
∴∠DON+∠CON=90°,
∵ON⊥OM,
∴∠MON=90°,
∴∠DON+∠DOM=90°,
∴∠DOM=∠CON,
在△DOM和△CON中,
,
∴△DOM≌△CON(ASA),
∵四边形MOND的面积是1,四边形MOND的面积=△DOM的面积+△DON的面积,
∴四边形MOND的面积=△CON的面积+△DON的面积=△DOC的面积,
∴△DOC的面积是1,
∴正方形ABCD的面积是4,
∴AB2=4,
∴AB=2,
故选:C.
36.(2021•重庆)如图,把含30°的直角三角板PMN放置在正方形ABCD中,∠PMN=30°,直角顶点P在正方形ABCD的对角线BD上,点M,N分别在AB和CD边上,MN与BD交于点O,且点O为MN的中点,则∠AMP的度数为( )
A.60° B.65° C.75° D.80°
【解答】解:∵四边形ABCD是正方形,
∴∠ABD=45°,
在Rt△PMN中,∠MPN=90°,
∵O为MN的中点,
∴OP=,
∵∠PMN=30°,
∴∠MPO=30°,
∴∠AMP=∠MPO+∠MBP
=30°+45°
=75°,
故选:C.
一十一.正方形的判定(共1小题)
37.(2021•娄底)如图,点E、F在矩形ABCD的对角线BD所在的直线上,BE=DF,则四边形AECF是( )
A.平行四边形 B.矩形 C.菱形 D.正方形
【解答】解:A.∵四边形ABCD是矩形,
∴AO=CO,BO=DO,
∵BE=DF,
∴EO=FO,
∴四边形AECF是平行四边形,
故本选项符合题意;
B.∵四边形ABCD是矩形,
∴AC=BD,
∴AC≠EF,
∴四边形AECF不是矩形,
故本选项不符合题意;
C.∵四边形ABCD是矩形,
∴不能证明AC⊥BD,
∴不能证明AC⊥EF,
故本选项不符合题意;
D.∵四边形ABCD是矩形,
∴AC=BD,
∴AC≠EF,
∴四边形AECF不是正方形,
故本选项不符合题意;
故选:A.
一十二.*平面向量(共1小题)
38.(2021•上海)如图,在平行四边形ABCD中,已知=,=,E为AB中点,则+=( )
A. B. C. D.
【解答】解:∵=,E为AB中点,
∴=,
∵四边形ABCD是平行四边形,
∴==,
∴+=+=,
故选:A.
相关试卷
这是一份2021中考数学真题知识点分类汇编-圆选择题2(含答案),共40页。
这是一份2021中考数学真题知识点分类汇编-圆选择题1(含答案),共29页。
这是一份2021中考数学真题知识点分类汇编-尺规作图选择题(含答案),共20页。