江苏省南京市、盐城市2022届高三年级第二次模拟考试数学试题
展开南京市、盐城市2022届高三年级第二次模拟考试
数学参考答案
一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.C 2.A 3.B 4.B 5.C 6.D 7.A 8.D
二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)
9.BCD 10.AD 11.AC 12.ABD
三、填空题(本大题共4小题,每小题5分,共20分)
13.8 14.144 15.- 16.120
四、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)
17.(本题满分10分)
解:(1)因为∠BAD=,AC平分∠BAD,所以∠BAC=∠CAD=.
在△ABC中,因为∠ABC=,所以∠ACB=,
又因为AC=2,由=,得AB=,················································2分
所以S△ABC=AB·ACsin∠BAC=.
在△ACD中,因为∠ADC=∠CAD=,所以CA=CD=2,
所以S△ACD=CA·CDsin∠ACD=,
所以S四边形ABCD=S△ABC+S△ACD=.·······································4分
(2)因为AC平分∠BAD,所以∠BAC=∠CAD,
在△ACD中,由∠ADC=, =,得AC=· . ①
在△ABC中,由∠ABC=, =,得AC=·. ②·····································6分
由①②得=.
又因为CD=2AB,所以2sin∠ACB=sin∠CAD.
设∠BAC=θ,则sinθ=2sin(-θ),··············································8分
所以sinθ=2×(cosθ-sinθ),即2sinθ=cosθ.
因为θ∈(0,),所以cosθ≠0,
所以tanθ=,即tan∠BAC=.·················································10分
18.(本题满分12分)
解:(1)因为2∈[21,22),所以a2=22=4,·········································2分
因为20∈[24,25),所以a20=25=32.···········································4分
(2)an=2k的项数为2k-2k-1=2k-1.·········································6分
又因为20+21+22+…+2k-1=2k-1,所以数列{an}的前2k-1项和为
S=21×20+22×21+23×22+…+2k×2k-1
=21+23+25+…+22k-1
=(4k-1).····························································8分
当k=5时,S31=(45-1)=682<2022,
S51=S31+26×20=682+1280=1962<2022,····································10分
S52=S51+26=1962+64=2026>2022.
又因为Sn+1>Sn,
所以使得Sn<2022成立的正整数n的最大值为51.·································12分
19.(本题满分12分)
解:(1)取AB中点E,连接PE,DE.
因为△PAB是边长为2的等边三角形,
所以AB⊥PE,PE=,AE=1.
又因为PD⊥AB,PD∩PE=P,PD,PE平面PDE,
所以AB⊥平面PDE.························································2分
因为DE面PDE,所以AB⊥DE.
在Rt△AED中,AD=2,AE=1,所以DE=.
在△PDE中,PD=,DE=,PE=,所以PE2+DE2=PD2,所以DE⊥PE.···············4分
又因为AB∩PE=E,AB,PE平面PAB,
所以DE⊥平面PAB.
又因为DE平面ABCD,
所以平面PAB⊥平面ABCD.··················································6分
(2)由(1)知,以{,,}为正交基底,建立如图所示的空间直角坐标系E-xyz,
则E(0,0,0),D(0,0,),C(-2,0,),P(0,,0).
则=(-2,0,0),=(0,-,).······································8分
设平面PCD的法向量为n=(x,y,z),
则即
取x=0,y=1,z=1.
所以n=(0,1,1)是平面PCD的一个法向量.……………10分
因为DE⊥平面PAB,
所以=(0,0,)为平面PAB的一个法向量.
所以cos<n,>==,
所以平面PAB和平面PCD所成锐二面角的大小为.·································12分
20.(本题满分12分)
解:(1)①当1≤X≤9时,P(X=i)=(1-p)i-1p,i=1,2,…,9.
当X =10时,P(X=10)=(1-p)9.
所以P(X=i)=·····························································4分
②E(X)=i(1-p)i-1p+10(1-p)9=pi(1-p)i-1+10(1-p)9.
令S=i(1-p)i-1,则E(X)=pS+10(1-p)9.
则S=1+2(1-p)+3(1-p)2+…+8(1-p)7+9(1-p)8,
(1-p)S=(1-p)+2(1-p)2+…+7(1-p)7+8(1-p)8+9(1-p)9,
两式相减,得pS=1+(1-p)+(1-p)2+…+(1-p)7+(1-p)8-9(1-p)9·················6分
=-9(1-p)9,
所以E(X)=+(1-p)9=[1-(1-p)10].
因为0<p<1,所以0<1-(1-p)10<1,
所以E(X)<.······························································9分
(2)当p=0.25时,由(1)得E(X)<4, 则a×E(X) <4a<5a,
即试验结束后的平均成本小于试验成功的获利,
所以该公司可以考虑投资该产品.····································12分
21.(本题满分12分)
解:(1)因为双曲线C渐近线方程为y=±x,所以=1.
又因为双曲线C经过点(,1),所以-=1.····································2分
解得a=b=.··························································4分
(2)方法1
当AB斜率不存在时,由双曲线对称性知AD经过原点,此时与题意不符.
设AB方程为y=kx+m(k≠0),A(x1,y1),B(x2,y2),AB中点E(x3,y3),则D(-x2,y2).
由消去x,得 (1-k2)x2-2kmx-m2-2=0,
所以x1+x2=,x1x2=-,···················································6分
则x3==,y3=kx3+m=,则AB的中垂线方程为y-=-(x-),
当x=0时,y=.
因为B,D两点关于y轴对称,则△ABD的外接圆圆心在y轴上,
记圆心为点F,则F(0,).····················································8分
因为△ABD的外接圆经过原点,则OF=FA,即||=.
又因为-=1,所以y12- y1+1=0.
同理,由OF=FB,得y22- y2+1=0,
所以y1,y2是方程y2-y+1=0的两个根,所以y1y2=1.····························10分
则(kx1+m)(kx2+m)=1,即k2x1x2+km(x1+x2)+m2=1,所以k2×(-)+km×+m2=1,
化简得k2+1=m2,
所以原点O到直线AB距离d==1,
所以直线AB与圆x2+y2=1相切.·············································12分
方法2
设直线AB方程为x=my+n,A(x1,y1),B(x2,y2),则D(-x2,y2).
又因为B,D两点关于y轴对称,则△ABD的外接圆的圆心在y轴上,设为P(0,t),
则PA=PB,即=.
由-=1,-=1,化简得t=y1+y2.············································6分
因为△ABD的外接圆经过原点O,所以PA=PO=|t|,即=|y1+y2|,
化简得y1y2=1.···························································8分
联立直线AB及双曲线方程消去x,得 (m2-1)y2+2mny+n2-2=0,
所以y1y2=.····················································10分
又因为y1y2=1,所以=1,即m2+1=n2,
所以原点O到直线AB距离d==1,
所以直线AB与圆x2+y2=1相切.·············································12分
22.(本题满分12分)
解:(1)由f(x)=aex+sinx-3x-2,得f'(x)=aex+cosx-3.
因为a≤0,所以f'(x)=aex+cosx-3≤cosx-3<0,所以f(x)在(-∞,+∞)单调递减.·········2分
又因为f(0)=a-2<0,f(a-2)=aea-2+sin(a-2)-3a+4>a(ea-2-3)≥0,
因此f(x)有唯一的零点.························································4分
(2)由(1)知,a≤0符合题意.
(i)当a=2时,
由f(x)=2ex+sinx-3x-2,得f'(x)=2ex+cosx-3.
当x<0时,f'(x)≤2ex-2<0,所以f(x)单调递减;···································6分
当x>0时,f''(x)=2ex-sinx≥2ex-1>0,所以f'(x)在(0,+∞)上单调递增,
从而,当x>0时,f'(x)>f'(0)=0,所以f(x)单调递增,
于是f(x)≥f(0)=0,当且仅当x=0时取等号,
故此时f(x)有唯一的零点x=0.·················································8分
(ii)当a>2时,f(x)>2ex+sinx-3x-2≥0,此时f(x)无零点;···························9分
(iii)当0<a<2时,
首先证明:当x≥0时,ex>.
设g(x)=ex-,x≥0,
则g'(x)=ex-x,g''(x)=ex-1≥0,所以g'(x)在[0,+∞)上单调递增,
故g'(x)≥g'(0)=1>0,所以g(x)在[0,+∞)上单调递增,
因此g(x)≥g(0)=1>0,即当x≥0时,ex>.········································10分
当x>0时,f(x)≥aex-3x-3>x2-3x-3,
令x2-3x-3=0,得x=.
取x0=>0,则f(x0)>0.
又f(0)=a-2<0,f(-1)=ae-1+1-sin1>0,
因此,当0<a<2时,f(x)至少有两个零点,不合题意.
综上,a=2或a≤0.························································12分
2018届江苏省南京市、盐城市高三年级第二次模拟考试数学试题(PDF版): 这是一份2018届江苏省南京市、盐城市高三年级第二次模拟考试数学试题(PDF版),文件包含答案pdf、江苏省南京市盐城市2018届高三年级第二次模拟考试数学试题PDF版pdf等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
2018届江苏省南京市、盐城市高三年级第二次模拟考试数学试题(PDF版): 这是一份2018届江苏省南京市、盐城市高三年级第二次模拟考试数学试题(PDF版),文件包含答案pdf、江苏省南京市盐城市2018届高三年级第二次模拟考试数学试题PDF版pdf等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
2018届江苏省南京市、盐城市高三年级第二次模拟考试数学试题(PDF版): 这是一份2018届江苏省南京市、盐城市高三年级第二次模拟考试数学试题(PDF版),文件包含答案pdf、江苏省南京市盐城市2018届高三年级第二次模拟考试数学试题PDF版pdf等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。