2022年高考理科数学押题预测卷+答案解析02(全国甲卷)
展开
2022年高考押题预测卷02【全国甲卷】
理科数学
(考试时间:120分钟 试卷满分:150分)
注意事项:
1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.
1.已知集合,则( )
A. B. C. D.
2.已知复数,其中是虚数单位,,下列选项中正确的是( )
A.若是纯虚数,则这个纯虚数为
B.若为实数,则
C.若在复平面内对应的点在第一象限,则
D.当时,
3.设等差数列和等比数列的首项都是1,公差与公比都是2,则( ).
A.54 B.56 C.58 D.57
4.己知四条直线,从这四条直线中任取两条,这两条直线都与函数的图象相切的概率为( )
A.0 B. C. D.
5.根据一组样本数据,,…,,求得经验回归方程为,且.现发现这组样本数据中有两个样本点(1.2,2.2)和(4.8,7.8)误差较大,去除后重新求得的经验回归直线l的斜率为1.2,则( )
A.变量x与y具有正相关关系
B.去除两个误差较大的样本点后,重新求得的经验回归方程为
C.去除两个误差较大的样本点后,y的估计值增加速度变快
D.去除两个误差较大的样本点后,相应于样本点(2,3.75)的残差为0.05
6.已知抛物线,圆.若点,分别在,上运动,且设点,则的最小值为( )
A. B. C. D.
7.关于函数的下列四个结论中:
①是偶函数 ②的最大值为
③在有3个零点 ④在区间单调递增
其中所有正确结论的编号是( )
A.①② B.①③ C.②④ D.①④
8.已知椭圆1(a>b>0)与双曲线1(m>0,n>0)具有相同焦点F1、F2,P是它们的一个交点,且∠F1PF2,记椭圆与双曲线的离心率分别为e1、e2,则3e12+e22的最小值是( )
A.2 B.3 C.4 D.5
9.在必修第一册教材“8.2.1几个函数模型的比较”一节的例2中,我们得到如下结论:当或时,;当时,,请比较,,的大小关系
A. B. C. D.
10.已知函数,若关于的方程有四个不同的实数解,且满足,则下列结论正确的是( )
A. B.
C. D.
11.已知某正四棱锥的体积是,该几何体的表面积最小值是,我们在绘画该表面积最小的几何体的直观图时所画的底面积大小是,则和的值分别是( )
A.3; B.4; C.4; D.3;
12.已知正方体的棱长为3,动点M在侧面上运动(包括边界),且,则与平面所成角的正切值的取值范围为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量、是两个非零向量,且,则与的 夹角为___________.
14.函数的最小值为______.
15.已知等比数列各项均为正数,且满足:,,记,则使得的最大正整数n为__________.
16.函数的图象与函数图象的所有交点的横坐标之和为___________.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
(一)必考题:共60分.
17.(12分)疫苗是指用各种病原微生物制作的用于预防接种的生物制品,接种疫苗是预防和控制传染病最经济、有效的公共卫生干预措施.某制药厂对预防某种疾病的两种疫苗开展临床对比试验.若使用后的抗体呈阳性,则认为疫苗有效.在名受访者中,名接种灭活疫苗,剩余名接种核酸疫苗,根据临床试验数据绘制等高条形图如图所示.已知事件“名受访者接种灭活疫苗且接种后抗体呈阳性”发生的概率为.
(1)求等高条形图中的值;
(2)根据所给数据,完成下面的列联表:
抗体情况 | 灭活疫苗 | 核酸疫苗 | 总计 |
抗体为阳性 |
|
|
|
抗体为阴性 |
|
|
|
总计 |
|
| 100 |
(3)判断能否有%的把握认为两种疫苗的预防效果存在差异?
参考公式:,其中
18.(12分)如图,在四棱锥中,底面是正方形,侧面底面,
,分别为中点,.
(1)求证:平面;
(2)求二面角的余弦值;
(3)在棱上是否存在一点,使平面?若存在,指出点的位置;若不存在,说明理由.
19.(12分)设等差数列的前项和为,且,.
(1)求数列的通项公式;
(2)在任意相邻两项和之间插入个1,使它们和原数列的项构成一个新的数列,求数列的前200项的和.
20.(12分)已知函数.
(1)若,讨论函数的单调性;
(2)设函数,若至少存在一个,使得成立,求实数a的取值范围.
21.(12分)如图所示,在平面直角坐标系中,椭圆:的左、右焦点分别为,,设是第一象限内上一点,,的延长线分别交于点,.
(1)求的周长;
(2)设,分别为,的内切圆半径,求的最大值.
(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.
22.[选修4-4:坐标系与参数方程](10分)
在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求曲线和直线的直角坐标方程;
(2)已知点,直线和曲线相交于、两点,求的值
23.[选修4-5:不等式选讲](10分)
已知函数.
(1)当时,求的最小值;
(2)当时,不等式恒成立,求实数a的取值范围.
2022年高考文科数学押题预测卷+答案解析02(全国甲卷): 这是一份2022年高考文科数学押题预测卷+答案解析02(全国甲卷),文件包含文科数学-2022年高考押题预测卷02全国甲卷全解全析docx、文科数学-2022年高考押题预测卷02全国甲卷参考答案docx、文科数学-2022年高考押题预测卷02全国甲卷考试版docx等3份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
2022年高考理科数学押题预测卷+答案解析01(全国甲卷): 这是一份2022年高考理科数学押题预测卷+答案解析01(全国甲卷),文件包含理科数学-2022年高考押题预测卷01全国甲卷全解全析docx、理科数学-2022年高考押题预测卷01全国甲卷参考答案docx、理科数学-2022年高考押题预测卷01全国甲卷考试版docx等3份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
2022年高考理科数学押题预测卷+答案解析02(全国乙卷): 这是一份2022年高考理科数学押题预测卷+答案解析02(全国乙卷),文件包含理科数学-2022年高考押题预测卷02全国乙卷全解全析docx、理科数学-2022年高考押题预测卷02全国乙卷参考答案docx、理科数学-2022年高考押题预测卷02全国乙卷考试版docx等3份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。