2022年中考数学二轮复习讲义-动态几何问题(1)
展开这是一份2022年中考数学二轮复习讲义-动态几何问题(1),共4页。
2022年中考数学二轮复习讲义
专题12 动态几何问题(1)
班级______姓名_____学号______
[中考要求]
动态几何问题是近年来中考数学试题的热点题型之一,常以压轴题的面目出现,题目灵活、多变,能全面考查学生分析问题和解决问题的综合能力,有较强的选拔功能.
[题型特点]
这类问题主要是集中代数、几何知识于一体,数形结合,综合性较强,常以三角形、四边形、圆等一些几何图形为载体,设计动态变化,并对变化过程中伴随着的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行综合考察研究.
[例题精析]
1、如图,在Rt△ABC中,∠A为直角,AB=6,AC=8,点P,Q,R分别在AB,BC,CA边上同时开始做匀速运动,2秒后,三个点同时停止运动,点P由点A出发以每秒3个单位长度的速度向点B运动,点Q由点B出发以每秒5个单位长度的速度向点C运动,点R由点C出发以每秒4个单位长度的速度向点A运动,在运动过程中:
(1)求证:△APR,△BPQ,△CQR的面积相等;
(2)求△PQR面积的最小值;
(3)用t(秒)(0≤t≤2)表示运动时间,是否存在t,使∠PQR=90º?
若存在,请直接写出t的值;若不存在,请说明理由.
2、(1)如图①是一张矩形纸片,按以下步骤进行操作:
(Ⅰ)将矩形纸片沿DF折叠,使点A落在CD边上点E处,如图②;
(Ⅱ)在第一次折叠的基础上,过点C再次折叠,使得点B落在边CD上点B′处,如图③,两次折痕交于点O;
(Ⅲ)展开纸片,分别连接OB、OE、OC、FD,如图④.
【探究】(1)证明:△OBC≌△OED;
(2)若AB=8,设BC为x,OB2为y,求y关于x的关系式.
3、如图1,△ABC(AC<BC<AC)绕点C顺时针旋转得△DEC,射线AB交射线DE于点F.
(1)∠AFD与∠BCE的关系是 ;
(2)如图2,当旋转角为60°时,点D,点B与线段AC的中点O恰好在同一直线上,延长DO至点G,使OG=OD,连接GC.
①∠AFD与∠GCD的关系是 ,请说明理由;
②如图3,连接AE,BE,若∠ACB=45°,CE=4,求线段AE的长度.
[规律总结]
解这类题目要“以静制动”,即把动态问题,变为静态问题来解.一般方法是抓住变化中的“不变量”,以不变应万变,
第一,根据题意理清题目中两个变量X、Y的变化情况并找出相关常量;
第二,按照图形中的几何性质及相互关系,找出一个基本关系式,把相关的量用一个自变量的表达式表达出来,然后再根据题目的要求,依据几何、代数知识解出;
第三,确定自变量的取值范围,画出相应的图象.对函数解析式中自变量的取值范围必须认真考虑,一般需有约束条件,这类题常常要分类讨论.
[强化训练
1.如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为 .
2.将直角三角板ABC按如图1放置,直角顶点C与坐标原点重合,直角边AC、BC分别与x轴和y轴重合,其中∠ABC=30°.将此三角板沿y轴向下平移,当点B平移到原点O时运动停止.设平移的距离为m,平移过程中三角板落在第一象限部分的面积为s,s关于m的函数图象(如图2所示)与m轴相交于点P(,0),与s轴相交于点Q.
(1)试确定三角板ABC的面积;
(2)求平移前AB边所在直线的解析式;
(3)求s关于m的函数关系式,并写出Q点的坐标.
3.如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线1是经过点P的一条直线,把△ABC沿直线1折叠,点B的对应点是点B′.
(1)如图1,当PB=4时,若点B′恰好在AC边上,则AB′的长度为 ;
(2)如图2,当PB=5时,若直线1∥AC,则BB′的长度为 ;
(3)如图3,点P在AB边上运动过程中,若直线1始终垂直于AC,△ACB′的面积是否变化?若变化,说明理由;若不变化,求出面积;
(4)当PB=6时,在直线1变化过程中,求△ACB′面积的最大值.
4.已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM的面积为S(cm2),S与t的函数关系如图②所示.
(1)直接写出动点M的运动速度为 cm/s,BC的长度为 cm;
(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1(cm2),S2(cm2)
①求动点N运动速度v(cm/s)的取值范围;
②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由.
相关试卷
这是一份2020中考数学二轮复习专题训练6——几何动态问题,共6页。
这是一份中考数学二轮复习核心考点专题专题36几何动态性问题之动点问题含解析答案,共45页。
这是一份中考数学二轮复习专题《动态几何问题》练习(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。