|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021年中考数学真题知识点分类汇编-图形的旋转填空题(含答案,共54题)
    立即下载
    加入资料篮
    2021年中考数学真题知识点分类汇编-图形的旋转填空题(含答案,共54题)01
    2021年中考数学真题知识点分类汇编-图形的旋转填空题(含答案,共54题)02
    2021年中考数学真题知识点分类汇编-图形的旋转填空题(含答案,共54题)03
    还剩16页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021年中考数学真题知识点分类汇编-图形的旋转填空题(含答案,共54题)

    展开
    这是一份2021年中考数学真题知识点分类汇编-图形的旋转填空题(含答案,共54题),共19页。试卷主要包含了定义等内容,欢迎下载使用。

    2021年中考数学真题知识点分类汇编-图形的旋转填空题(含答案,共54题)

    一.旋转的性质(共8小题)
    1.(2021•镇江)如图,等腰三角形ABC中,AB=AC,BC=6,cos∠ABC=,点P在边AC上运动(可与点A,C重合),将线段BP绕点P逆时针旋转120°,得到线段DP,连接BD,则BD长的最大值为    .

    2.(2021•巴中)如图,把边长为3的正方形OABC绕点O逆时针旋转n°(0<n<90)得到正方形ODEF,DE与BC交于点P,ED的延长线交AB于点Q,交OA的延长线于点M.若BQ:AQ=3:1,则AM=   .

    3.(2021•桂林)如图,正方形OABC的边长为2,将正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,连接BC′,当点A′恰好落在线段BC′上时,线段BC′的长度是    .

    4.(2021•吉林)如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(4,0),连接AB,若将△ABO绕点B顺时针旋转90°,得到△A′BO′,则点A′的坐标为    .

    5.(2021•南京)如图,将▱ABCD绕点A逆时针旋转到▱AB′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E.若AB=3,BC=4,BB′=1,则CE的长为    .

    6.(2021•新疆)如图,已知正方形ABCD边长为1,E为AB边上一点,以点D为中心,将△DAE按逆时针方向旋转得△DCF,连接EF,分别交BD,CD于点M,N.若,则sin∠EDM=   .

    7.(2021•上海)定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为2,中心为O,在正方形外有一点P,OP=2,当正方形绕着点O旋转时,则点P到正方形的最短距离d的取值范围为    .

    8.(2021•苏州)如图,射线OM,ON互相垂直,OA=8,点B位于射线OM的上方,且在线段OA的垂直平分线l上,连接AB,AB=5.将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,若点B′恰好落在射线ON上,则点A′到射线ON的距离d=   .

    二.旋转对称图形(共1小题)
    9.(2021•青海)如图所示的图案由三个叶片组成,绕点O旋转120°后可以和自身重合.若每个叶片的面积为4cm2,∠AOB为120°,则图中阴影部分的面积之和为    cm2.

    三.中心对称(共1小题)
    10.(2021•临沂)在平面直角坐标系中,平行四边形ABCD的对称中心是坐标原点,顶点A、B的坐标分别是(﹣1,1)、(2,1),将平行四边形ABCD沿x轴向右平移3个单位长度,则顶点C的对应点C1的坐标是    .
    四.关于原点对称的点的坐标(共1小题)
    11.(2021•抚顺)在平面直角坐标系中,点M(﹣2,4)关于原点对称的点的坐标是    .
    五.坐标与图形变化-旋转(共3小题)
    12.(2021•鄂州)如图,在平面直角坐标系中,点C的坐标为(﹣1,0),点A的坐标为(﹣3,3),将点A绕点C顺时针旋转90°得到点B,则点B的坐标为    .

    13.(2021•怀化)如图,在平面直角坐标系中,已知A(﹣2,1),B(﹣1,4),C(﹣1,1),将△ABC先向右平移3个单位长度得到△A1B1C1(点A,B,C的对应点分别是A1,B1,C1),再绕C1顺时针方向旋转90°得到△A2B2C1(点A1,B1,的对应点分别是A2,B2),则A2的坐标是    .

    14.(2021•枣庄)如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为   .


    参考答案与试题解析
    一.旋转的性质(共8小题)
    1.(2021•镇江)如图,等腰三角形ABC中,AB=AC,BC=6,cos∠ABC=,点P在边AC上运动(可与点A,C重合),将线段BP绕点P逆时针旋转120°,得到线段DP,连接BD,则BD长的最大值为  9 .

    【答案】9.
    【解析】解:∵将线段BP绕点P逆时针旋转120°,得到线段DP,
    ∴BP=PD,
    ∴△BPD是等腰三角形,
    ∴∠PBD=30°,
    过点P作PH⊥BD于点H,

    ∴BH=DH,
    ∵cos30°==,
    ∴BH=BP,
    ∴BD=BP,
    ∴当BP最大时,BD取最大值,即点P与点A重合时,BP=BA最大,
    过点A作AG⊥BC于点G,
    ∵AB=AC,AG⊥BC,
    ∴BG=BC=3,
    ∵cos∠ABC=,
    ∴,
    ∴AB=9,
    ∴BD最大值为:BP=9.
    2.(2021•巴中)如图,把边长为3的正方形OABC绕点O逆时针旋转n°(0<n<90)得到正方形ODEF,DE与BC交于点P,ED的延长线交AB于点Q,交OA的延长线于点M.若BQ:AQ=3:1,则AM=  .

    【解析】解:方法一,∵BQ:AQ=3:1,
    ∴,
    ∵把边长为3的正方形OABC绕点O逆时针旋转n°(0<n<90)得到正方形ODEF,
    ∴OD=AB=OA=3,∠ODE=∠OAB=90°,
    ∴∠ODM=∠QAM=90°,
    又∵∠M=∠M,
    ∴△ODM∽△QAM,
    ∴=,
    设AM=x,则DM=4x,OM=3+x,
    在Rt△ODM中,由勾股定理得:
    OD2+DM2=OM2,
    即32+(4x)2=(3+x)2,
    解得:x=或0(舍去),
    ∴AM=,
    【答案】.
    方法二,连接OQ,OP,

    ∵将正方形OABC绕点O逆时针旋转n°(0<n<90)得到正方形ODEF,
    ∴OA=OD,∠OAQ=∠ODQ=90°,
    在Rt△OAQ和Rt△ODQ中,

    ∴Rt△OAQ≌Rt△ODQ(HL),
    ∴QA=DQ,
    同理可证:CP=DP,
    ∵BQ:AQ=3:1,AB=3,
    ∴BQ=,AQ=,
    设CP=x,则BP=3﹣x,PQ=x+,
    在Rt△BPQ中,由勾股定理得:
    (3﹣x)2+()2=(x+)2,
    解得x=,
    ∴BP=,
    ∵∠AQM=∠BQP,∠BAM=∠B,
    ∴△AQM∽△BQP,
    ∴,
    ∴,
    ∴AM=.
    【答案】.
    3.(2021•桂林)如图,正方形OABC的边长为2,将正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,连接BC′,当点A′恰好落在线段BC′上时,线段BC′的长度是  + .

    【答案】+.
    【解析】解:如图,连接OB,过点O作OE⊥C'B于E,则∠OEC'=∠OEB=90°,

    ∵将正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,点A′恰好落在线段BC′上,
    ∴∠OC'E=45°,OA=OC'=AB=2,∠A=90°,
    ∴OB=2,OE=EC'=,
    在Rt△OBE中,由勾股定理得:BE===,
    ∴BC'=BE+EC'=+.
    4.(2021•吉林)如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(4,0),连接AB,若将△ABO绕点B顺时针旋转90°,得到△A′BO′,则点A′的坐标为  (7,4) .

    【答案】(7,4).
    【解析】解:作A'C⊥x轴于点C,

    由旋转可得∠O'=90°,O'B⊥x轴,
    ∴四边形O'BCA'为矩形,
    ∴BC=A'O'=OA=3,A'C=O'B=OB=4,
    ∴点A'坐标为(7,4).
    5.(2021•南京)如图,将▱ABCD绕点A逆时针旋转到▱AB′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E.若AB=3,BC=4,BB′=1,则CE的长为   .

    【解析】解:法一、如图,过点A作AM⊥BC于点M,过点B作BN⊥AB′于点N,过点E作EG⊥BC,交BC的延长线于点G.

    由旋转可知,AB=AB′=3,∠ABB′=∠AB′C′,
    ∴∠ABB′=∠AB′B=∠AB′C′,
    ∵BB′=1,AM⊥BB′,
    ∴BM=B′M=,
    ∴AM==,
    ∵S△ABB′==,
    ∴××1=•BN×3,则BN=,
    ∴AN===,
    ∵AB∥DC,
    ∴∠ECG=∠ABC,
    ∵∠AMB=∠EGC=90°,
    ∴△AMB∽△EGC,
    ∴===,
    设CG=a,则EG=a,
    ∵∠ABB′+∠AB′B+∠BAB′=180°,
    ∠AB′B+∠AB′C′+∠C′B′C=180°,
    又∵∠ABB′=∠AB′B=∠AB′C′,
    ∴∠BAB′=∠C′B′C,
    ∵∠ANB=∠EGC=90°,
    ∴△ANB∽△B′GE,
    ∴===,
    ∵BC=4,BB′=1,
    ∴B′C=3,B′G=3+a,
    ∴=,解得a=.
    ∴CG=,EG=,
    ∴EC===.
    【答案】.
    法二、如图,连接DD',
    由旋转可知,∠BAB′=∠DAD′,AB′=AB=3,AD′=AD=4,
    ∴△BAB′∽△DAD′,
    ∴AB:BB′=AD:DD′=3:1,∠AD′D=∠AB′B=∠B,
    ∴DD′=,
    又∵∠AD′C′=∠AB′C′=∠B,∠AD′D=∠B=∠AB′B,
    ∴∠AD′C′=∠AD′D,即点D′,D,C′在同一条直线上,
    ∴DC′=,
    又∠C′=∠ECB′,∠DEC′=∠B′EC,
    ∴△CEB′∽△C'ED,
    ∴B′E:DE=CE:C′E=B′C:DC′,即B′E:DE=CE:C′E=3:,
    设CE=x,B'E=y,
    ∴x:(4﹣y)=y:(3﹣x)=3:,
    ∴x=.
    【答案】.
    法三、构造相似,如图,延长B′C到点G,使B′G=B′E,连接EG,

    ∴∠B′EG=∠B′GE,
    由旋转可知,AB=AB′,
    ∴∠B=∠AB′B=∠AB′C′,
    ∴∠BAB′=∠EB′G,
    ∴∠B=∠G,
    又AB∥CD,
    ∴∠ECG=∠B=∠G,
    ∴△ABB′∽△B′EG∽△ECG,
    ∴,
    设CG=m,
    ∴EC=3m,
    ∴B′G=3+m,
    ∴,
    解得m=,
    ∴3m=.
    【答案】.
    解法四:如图,过点C作CF∥C′D′,交B′C′于点F,

    ∵AB=AB′,
    ∴∠B=∠AB′B,
    由∵∠AB′C′=∠B,
    由三角形内角和可知,∠FB′C=∠BAB′,
    ∵AB′∥FC,
    ∴∠B′CF=∠AB′B,
    由∵AB=3,BB′=1,BC=4,
    ∴AB=B′C,
    ∴△ABB′≌△B′CF,
    ∴FC=B′B=1,
    由旋转可知,△ABB′∽△ADD′,
    ∴,
    ∴DD′=
    ∴C′D=,
    又由CF∥C′D,
    ∴△C′DE∽△FCE,
    ∴=,
    ∴=,
    ∴,
    ∴EC=.
    【答案】.

    6.(2021•新疆)如图,已知正方形ABCD边长为1,E为AB边上一点,以点D为中心,将△DAE按逆时针方向旋转得△DCF,连接EF,分别交BD,CD于点M,N.若,则sin∠EDM=  .

    【答案】.

    【解析】解:如图,过点E作EG⊥BD于点G,
    设AE=2x,则DN=5x,
    由旋转性质得:CF=AE=2x,∠DCF=∠A=90°,
    ∵四边形ABCD是正方形,
    ∴∠DCB=90°,∠ABC=90°,∠ABD=45°,
    ∴∠DCB+∠DCF=180°,∠DCB=∠ABC,
    ∴点B,C,F在同一条直线上,
    ∵∠DCB=∠ABC,∠NFC=∠EFB,
    ∴△FNC∽△FEB,
    ∴,
    ∴,
    解得:x1=﹣1(舍去),x2=,
    ∴AE=2×=,
    ∴ED===,
    EB=AB﹣AE=1﹣=,
    在Rt△EBG中,EG=BE•sin45°=×=,
    ∴sin∠EDM===,
    7.(2021•上海)定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为2,中心为O,在正方形外有一点P,OP=2,当正方形绕着点O旋转时,则点P到正方形的最短距离d的取值范围为  2﹣≤d≤1 .

    【答案】2﹣≤d≤1.
    【解析】解:如图:设AB的中点是E,OP过点E时,点O与边AB上所有点的连线中,OE最小,此时d=PE最大,OP过顶点A时,点O与边AB上所有点的连线中,OA最大,此时d=PA最小,

    如图①:∵正方形ABCD边长为2,O为正方形中心,
    ∴AE=1,∠OAE=45°,OE⊥AB,
    ∴OE=1,
    ∵OP=2,
    ∴d=PE=1;
    如图②:∵正方形ABCD边长为2,O为正方形中心,
    ∴AE=1,∠OAE=45°,OE⊥AB,
    ∴OA=,
    ∵OP=2,
    ∴d=PA=2﹣;
    ∴d的取值范围为2﹣≤d≤1.
    8.(2021•苏州)如图,射线OM,ON互相垂直,OA=8,点B位于射线OM的上方,且在线段OA的垂直平分线l上,连接AB,AB=5.将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,若点B′恰好落在射线ON上,则点A′到射线ON的距离d=  .

    【答案】.
    【解析】解:设OA的垂直平分线与OA交于C,将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,C随之旋转到C',
    过A'作A'H⊥ON于H,过C'作C'D⊥ON于D,过A'作A'E⊥DC'于E,如图:

    ∵OA=8,AB=5,BC是OA的垂直平分线,
    ∴OB=5,OC=AC=4,BC=3,cos∠BOC==,sin∠BOC==,
    ∵线段AB绕点O按逆时针方向旋转得到对应线段A′B′,C随之旋转到C',
    ∴B'C'=BC=3,A'C'=AC=4,∠BOC=∠B'OC',
    ∵∠B'C'D=∠B'C'O﹣∠DC'O=90°﹣∠DC'O=∠B'OC',
    ∴cos∠B'C'D=,
    Rt△B'C'D中,=,即=,
    ∴C'D=,
    ∵AE∥ON,
    ∴∠B'OC'=∠C'A'E,
    ∴sin∠C'AE=sin∠B'OC'=sin∠BOC=,
    Rt△A'C'E中,=,即=,
    ∴C'E=,
    ∴DE=C'D+C'E=,
    而A'H⊥ON,C'D⊥ON,A'E⊥DC',
    ∴四边形A'EDH是矩形,
    ∴A'H=DE,即A'到ON的距离是.
    方法二:过A作AC⊥OB于C,如图:

    由旋转可知:点A′到射线ON的距离d=AC,
    ∵OB•AC=OA•BD,
    ∴AC==.
    二.旋转对称图形(共1小题)
    9.(2021•青海)如图所示的图案由三个叶片组成,绕点O旋转120°后可以和自身重合.若每个叶片的面积为4cm2,∠AOB为120°,则图中阴影部分的面积之和为  4 cm2.

    【解析】解:∵三个叶片组成,绕点O旋转120°后可以和自身重合,
    而∠AOB为120°,
    ∴图中阴影部分的面积之和=(4+4+4)=4(cm2).
    故答案为4.
    三.中心对称(共1小题)
    10.(2021•临沂)在平面直角坐标系中,平行四边形ABCD的对称中心是坐标原点,顶点A、B的坐标分别是(﹣1,1)、(2,1),将平行四边形ABCD沿x轴向右平移3个单位长度,则顶点C的对应点C1的坐标是  (4,﹣1) .
    【答案】(4,﹣1).
    【解析】解:∵平行四边形ABCD的对称中心是坐标原点,
    ∴点A,点C关于原点对称,
    ∵A(﹣1,1),
    ∴C(1,﹣1),
    ∴将平行四边形ABCD沿x轴向右平移3个单位长度,则顶点C的对应点C1的坐标是(4,﹣1),
    四.关于原点对称的点的坐标(共1小题)
    11.(2021•抚顺)在平面直角坐标系中,点M(﹣2,4)关于原点对称的点的坐标是  (2,﹣4) .
    【答案】(2,﹣4).
    【解析】解:点(﹣2,4)关于原点对称的点的坐标为(2,﹣4).
    五.坐标与图形变化-旋转(共3小题)
    12.(2021•鄂州)如图,在平面直角坐标系中,点C的坐标为(﹣1,0),点A的坐标为(﹣3,3),将点A绕点C顺时针旋转90°得到点B,则点B的坐标为  (2,2) .

    【答案】(2,2).
    【解析】解:如图,过点A作AE⊥x轴于E,过点B作BF⊥x轴于F.

    ∵∠AEC=∠ACB=∠CFB=90°,
    ∴∠ACE+∠BCF=90°,∠BCF+∠B=90°,
    ∴∠ACE=∠B,
    在△AEC和△CFB中,

    ∴△AEC≌△CFB(AAS),
    ∴AE=CF,EC=BF,
    ∵A(﹣3,3),C(﹣1,0),
    ∴AE=CF=3,OC=1,EC=BF=2,
    ∴OF=CF﹣OC=2,
    ∴B(2,2),
    13.(2021•怀化)如图,在平面直角坐标系中,已知A(﹣2,1),B(﹣1,4),C(﹣1,1),将△ABC先向右平移3个单位长度得到△A1B1C1(点A,B,C的对应点分别是A1,B1,C1),再绕C1顺时针方向旋转90°得到△A2B2C1(点A1,B1,的对应点分别是A2,B2),则A2的坐标是  (2,2) .

    【答案】(2,2).
    【解析】解:如图,观察图象可知A2(2,2).

    14.(2021•枣庄)如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为 (1,﹣1) .

    【答案】(1,﹣1).

    【解析】解:连接AA′、CC′,
    作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,
    直线MN和直线EF的交点为P,点P就是旋转中心.
    ∵直线MN为:x=1,设直线CC′为y=kx+b,由题意:,
    ∴,
    ∴直线CC′为y=x+,
    ∵直线EF⊥CC′,经过CC′中点(,),
    ∴直线EF为y=﹣3x+2,
    由得,
    ∴P(1,﹣1).
    (本题可以用图象法,直接得出P坐标).
    相关试卷

    2021中考数学真题知识点分类汇编-圆填空题1(含答案): 这是一份2021中考数学真题知识点分类汇编-圆填空题1(含答案),共34页。

    2021年中考数学真题知识点分类汇编-图形的旋转选择题(含答案,共54题): 这是一份2021年中考数学真题知识点分类汇编-图形的旋转选择题(含答案,共54题),共36页。

    2021年中考数学真题知识点分类汇编-图形的旋转解答题(含答案,共36题): 这是一份2021年中考数学真题知识点分类汇编-图形的旋转解答题(含答案,共36题),共85页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021年中考数学真题知识点分类汇编-图形的旋转填空题(含答案,共54题)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map