2021年中考数学真题知识点分类汇编-图形的旋转填空题(含答案,共54题)
展开2021年中考数学真题知识点分类汇编-图形的旋转填空题(含答案,共54题)
一.旋转的性质(共8小题)
1.(2021•镇江)如图,等腰三角形ABC中,AB=AC,BC=6,cos∠ABC=,点P在边AC上运动(可与点A,C重合),将线段BP绕点P逆时针旋转120°,得到线段DP,连接BD,则BD长的最大值为 .
2.(2021•巴中)如图,把边长为3的正方形OABC绕点O逆时针旋转n°(0<n<90)得到正方形ODEF,DE与BC交于点P,ED的延长线交AB于点Q,交OA的延长线于点M.若BQ:AQ=3:1,则AM= .
3.(2021•桂林)如图,正方形OABC的边长为2,将正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,连接BC′,当点A′恰好落在线段BC′上时,线段BC′的长度是 .
4.(2021•吉林)如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(4,0),连接AB,若将△ABO绕点B顺时针旋转90°,得到△A′BO′,则点A′的坐标为 .
5.(2021•南京)如图,将▱ABCD绕点A逆时针旋转到▱AB′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E.若AB=3,BC=4,BB′=1,则CE的长为 .
6.(2021•新疆)如图,已知正方形ABCD边长为1,E为AB边上一点,以点D为中心,将△DAE按逆时针方向旋转得△DCF,连接EF,分别交BD,CD于点M,N.若,则sin∠EDM= .
7.(2021•上海)定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为2,中心为O,在正方形外有一点P,OP=2,当正方形绕着点O旋转时,则点P到正方形的最短距离d的取值范围为 .
8.(2021•苏州)如图,射线OM,ON互相垂直,OA=8,点B位于射线OM的上方,且在线段OA的垂直平分线l上,连接AB,AB=5.将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,若点B′恰好落在射线ON上,则点A′到射线ON的距离d= .
二.旋转对称图形(共1小题)
9.(2021•青海)如图所示的图案由三个叶片组成,绕点O旋转120°后可以和自身重合.若每个叶片的面积为4cm2,∠AOB为120°,则图中阴影部分的面积之和为 cm2.
三.中心对称(共1小题)
10.(2021•临沂)在平面直角坐标系中,平行四边形ABCD的对称中心是坐标原点,顶点A、B的坐标分别是(﹣1,1)、(2,1),将平行四边形ABCD沿x轴向右平移3个单位长度,则顶点C的对应点C1的坐标是 .
四.关于原点对称的点的坐标(共1小题)
11.(2021•抚顺)在平面直角坐标系中,点M(﹣2,4)关于原点对称的点的坐标是 .
五.坐标与图形变化-旋转(共3小题)
12.(2021•鄂州)如图,在平面直角坐标系中,点C的坐标为(﹣1,0),点A的坐标为(﹣3,3),将点A绕点C顺时针旋转90°得到点B,则点B的坐标为 .
13.(2021•怀化)如图,在平面直角坐标系中,已知A(﹣2,1),B(﹣1,4),C(﹣1,1),将△ABC先向右平移3个单位长度得到△A1B1C1(点A,B,C的对应点分别是A1,B1,C1),再绕C1顺时针方向旋转90°得到△A2B2C1(点A1,B1,的对应点分别是A2,B2),则A2的坐标是 .
14.(2021•枣庄)如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为 .
参考答案与试题解析
一.旋转的性质(共8小题)
1.(2021•镇江)如图,等腰三角形ABC中,AB=AC,BC=6,cos∠ABC=,点P在边AC上运动(可与点A,C重合),将线段BP绕点P逆时针旋转120°,得到线段DP,连接BD,则BD长的最大值为 9 .
【答案】9.
【解析】解:∵将线段BP绕点P逆时针旋转120°,得到线段DP,
∴BP=PD,
∴△BPD是等腰三角形,
∴∠PBD=30°,
过点P作PH⊥BD于点H,
∴BH=DH,
∵cos30°==,
∴BH=BP,
∴BD=BP,
∴当BP最大时,BD取最大值,即点P与点A重合时,BP=BA最大,
过点A作AG⊥BC于点G,
∵AB=AC,AG⊥BC,
∴BG=BC=3,
∵cos∠ABC=,
∴,
∴AB=9,
∴BD最大值为:BP=9.
2.(2021•巴中)如图,把边长为3的正方形OABC绕点O逆时针旋转n°(0<n<90)得到正方形ODEF,DE与BC交于点P,ED的延长线交AB于点Q,交OA的延长线于点M.若BQ:AQ=3:1,则AM= .
【解析】解:方法一,∵BQ:AQ=3:1,
∴,
∵把边长为3的正方形OABC绕点O逆时针旋转n°(0<n<90)得到正方形ODEF,
∴OD=AB=OA=3,∠ODE=∠OAB=90°,
∴∠ODM=∠QAM=90°,
又∵∠M=∠M,
∴△ODM∽△QAM,
∴=,
设AM=x,则DM=4x,OM=3+x,
在Rt△ODM中,由勾股定理得:
OD2+DM2=OM2,
即32+(4x)2=(3+x)2,
解得:x=或0(舍去),
∴AM=,
【答案】.
方法二,连接OQ,OP,
∵将正方形OABC绕点O逆时针旋转n°(0<n<90)得到正方形ODEF,
∴OA=OD,∠OAQ=∠ODQ=90°,
在Rt△OAQ和Rt△ODQ中,
,
∴Rt△OAQ≌Rt△ODQ(HL),
∴QA=DQ,
同理可证:CP=DP,
∵BQ:AQ=3:1,AB=3,
∴BQ=,AQ=,
设CP=x,则BP=3﹣x,PQ=x+,
在Rt△BPQ中,由勾股定理得:
(3﹣x)2+()2=(x+)2,
解得x=,
∴BP=,
∵∠AQM=∠BQP,∠BAM=∠B,
∴△AQM∽△BQP,
∴,
∴,
∴AM=.
【答案】.
3.(2021•桂林)如图,正方形OABC的边长为2,将正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,连接BC′,当点A′恰好落在线段BC′上时,线段BC′的长度是 + .
【答案】+.
【解析】解:如图,连接OB,过点O作OE⊥C'B于E,则∠OEC'=∠OEB=90°,
∵将正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,点A′恰好落在线段BC′上,
∴∠OC'E=45°,OA=OC'=AB=2,∠A=90°,
∴OB=2,OE=EC'=,
在Rt△OBE中,由勾股定理得:BE===,
∴BC'=BE+EC'=+.
4.(2021•吉林)如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(4,0),连接AB,若将△ABO绕点B顺时针旋转90°,得到△A′BO′,则点A′的坐标为 (7,4) .
【答案】(7,4).
【解析】解:作A'C⊥x轴于点C,
由旋转可得∠O'=90°,O'B⊥x轴,
∴四边形O'BCA'为矩形,
∴BC=A'O'=OA=3,A'C=O'B=OB=4,
∴点A'坐标为(7,4).
5.(2021•南京)如图,将▱ABCD绕点A逆时针旋转到▱AB′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E.若AB=3,BC=4,BB′=1,则CE的长为 .
【解析】解:法一、如图,过点A作AM⊥BC于点M,过点B作BN⊥AB′于点N,过点E作EG⊥BC,交BC的延长线于点G.
由旋转可知,AB=AB′=3,∠ABB′=∠AB′C′,
∴∠ABB′=∠AB′B=∠AB′C′,
∵BB′=1,AM⊥BB′,
∴BM=B′M=,
∴AM==,
∵S△ABB′==,
∴××1=•BN×3,则BN=,
∴AN===,
∵AB∥DC,
∴∠ECG=∠ABC,
∵∠AMB=∠EGC=90°,
∴△AMB∽△EGC,
∴===,
设CG=a,则EG=a,
∵∠ABB′+∠AB′B+∠BAB′=180°,
∠AB′B+∠AB′C′+∠C′B′C=180°,
又∵∠ABB′=∠AB′B=∠AB′C′,
∴∠BAB′=∠C′B′C,
∵∠ANB=∠EGC=90°,
∴△ANB∽△B′GE,
∴===,
∵BC=4,BB′=1,
∴B′C=3,B′G=3+a,
∴=,解得a=.
∴CG=,EG=,
∴EC===.
【答案】.
法二、如图,连接DD',
由旋转可知,∠BAB′=∠DAD′,AB′=AB=3,AD′=AD=4,
∴△BAB′∽△DAD′,
∴AB:BB′=AD:DD′=3:1,∠AD′D=∠AB′B=∠B,
∴DD′=,
又∵∠AD′C′=∠AB′C′=∠B,∠AD′D=∠B=∠AB′B,
∴∠AD′C′=∠AD′D,即点D′,D,C′在同一条直线上,
∴DC′=,
又∠C′=∠ECB′,∠DEC′=∠B′EC,
∴△CEB′∽△C'ED,
∴B′E:DE=CE:C′E=B′C:DC′,即B′E:DE=CE:C′E=3:,
设CE=x,B'E=y,
∴x:(4﹣y)=y:(3﹣x)=3:,
∴x=.
【答案】.
法三、构造相似,如图,延长B′C到点G,使B′G=B′E,连接EG,
∴∠B′EG=∠B′GE,
由旋转可知,AB=AB′,
∴∠B=∠AB′B=∠AB′C′,
∴∠BAB′=∠EB′G,
∴∠B=∠G,
又AB∥CD,
∴∠ECG=∠B=∠G,
∴△ABB′∽△B′EG∽△ECG,
∴,
设CG=m,
∴EC=3m,
∴B′G=3+m,
∴,
解得m=,
∴3m=.
【答案】.
解法四:如图,过点C作CF∥C′D′,交B′C′于点F,
∵AB=AB′,
∴∠B=∠AB′B,
由∵∠AB′C′=∠B,
由三角形内角和可知,∠FB′C=∠BAB′,
∵AB′∥FC,
∴∠B′CF=∠AB′B,
由∵AB=3,BB′=1,BC=4,
∴AB=B′C,
∴△ABB′≌△B′CF,
∴FC=B′B=1,
由旋转可知,△ABB′∽△ADD′,
∴,
∴DD′=
∴C′D=,
又由CF∥C′D,
∴△C′DE∽△FCE,
∴=,
∴=,
∴,
∴EC=.
【答案】.
6.(2021•新疆)如图,已知正方形ABCD边长为1,E为AB边上一点,以点D为中心,将△DAE按逆时针方向旋转得△DCF,连接EF,分别交BD,CD于点M,N.若,则sin∠EDM= .
【答案】.
【解析】解:如图,过点E作EG⊥BD于点G,
设AE=2x,则DN=5x,
由旋转性质得:CF=AE=2x,∠DCF=∠A=90°,
∵四边形ABCD是正方形,
∴∠DCB=90°,∠ABC=90°,∠ABD=45°,
∴∠DCB+∠DCF=180°,∠DCB=∠ABC,
∴点B,C,F在同一条直线上,
∵∠DCB=∠ABC,∠NFC=∠EFB,
∴△FNC∽△FEB,
∴,
∴,
解得:x1=﹣1(舍去),x2=,
∴AE=2×=,
∴ED===,
EB=AB﹣AE=1﹣=,
在Rt△EBG中,EG=BE•sin45°=×=,
∴sin∠EDM===,
7.(2021•上海)定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为2,中心为O,在正方形外有一点P,OP=2,当正方形绕着点O旋转时,则点P到正方形的最短距离d的取值范围为 2﹣≤d≤1 .
【答案】2﹣≤d≤1.
【解析】解:如图:设AB的中点是E,OP过点E时,点O与边AB上所有点的连线中,OE最小,此时d=PE最大,OP过顶点A时,点O与边AB上所有点的连线中,OA最大,此时d=PA最小,
如图①:∵正方形ABCD边长为2,O为正方形中心,
∴AE=1,∠OAE=45°,OE⊥AB,
∴OE=1,
∵OP=2,
∴d=PE=1;
如图②:∵正方形ABCD边长为2,O为正方形中心,
∴AE=1,∠OAE=45°,OE⊥AB,
∴OA=,
∵OP=2,
∴d=PA=2﹣;
∴d的取值范围为2﹣≤d≤1.
8.(2021•苏州)如图,射线OM,ON互相垂直,OA=8,点B位于射线OM的上方,且在线段OA的垂直平分线l上,连接AB,AB=5.将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,若点B′恰好落在射线ON上,则点A′到射线ON的距离d= .
【答案】.
【解析】解:设OA的垂直平分线与OA交于C,将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,C随之旋转到C',
过A'作A'H⊥ON于H,过C'作C'D⊥ON于D,过A'作A'E⊥DC'于E,如图:
∵OA=8,AB=5,BC是OA的垂直平分线,
∴OB=5,OC=AC=4,BC=3,cos∠BOC==,sin∠BOC==,
∵线段AB绕点O按逆时针方向旋转得到对应线段A′B′,C随之旋转到C',
∴B'C'=BC=3,A'C'=AC=4,∠BOC=∠B'OC',
∵∠B'C'D=∠B'C'O﹣∠DC'O=90°﹣∠DC'O=∠B'OC',
∴cos∠B'C'D=,
Rt△B'C'D中,=,即=,
∴C'D=,
∵AE∥ON,
∴∠B'OC'=∠C'A'E,
∴sin∠C'AE=sin∠B'OC'=sin∠BOC=,
Rt△A'C'E中,=,即=,
∴C'E=,
∴DE=C'D+C'E=,
而A'H⊥ON,C'D⊥ON,A'E⊥DC',
∴四边形A'EDH是矩形,
∴A'H=DE,即A'到ON的距离是.
方法二:过A作AC⊥OB于C,如图:
由旋转可知:点A′到射线ON的距离d=AC,
∵OB•AC=OA•BD,
∴AC==.
二.旋转对称图形(共1小题)
9.(2021•青海)如图所示的图案由三个叶片组成,绕点O旋转120°后可以和自身重合.若每个叶片的面积为4cm2,∠AOB为120°,则图中阴影部分的面积之和为 4 cm2.
【解析】解:∵三个叶片组成,绕点O旋转120°后可以和自身重合,
而∠AOB为120°,
∴图中阴影部分的面积之和=(4+4+4)=4(cm2).
故答案为4.
三.中心对称(共1小题)
10.(2021•临沂)在平面直角坐标系中,平行四边形ABCD的对称中心是坐标原点,顶点A、B的坐标分别是(﹣1,1)、(2,1),将平行四边形ABCD沿x轴向右平移3个单位长度,则顶点C的对应点C1的坐标是 (4,﹣1) .
【答案】(4,﹣1).
【解析】解:∵平行四边形ABCD的对称中心是坐标原点,
∴点A,点C关于原点对称,
∵A(﹣1,1),
∴C(1,﹣1),
∴将平行四边形ABCD沿x轴向右平移3个单位长度,则顶点C的对应点C1的坐标是(4,﹣1),
四.关于原点对称的点的坐标(共1小题)
11.(2021•抚顺)在平面直角坐标系中,点M(﹣2,4)关于原点对称的点的坐标是 (2,﹣4) .
【答案】(2,﹣4).
【解析】解:点(﹣2,4)关于原点对称的点的坐标为(2,﹣4).
五.坐标与图形变化-旋转(共3小题)
12.(2021•鄂州)如图,在平面直角坐标系中,点C的坐标为(﹣1,0),点A的坐标为(﹣3,3),将点A绕点C顺时针旋转90°得到点B,则点B的坐标为 (2,2) .
【答案】(2,2).
【解析】解:如图,过点A作AE⊥x轴于E,过点B作BF⊥x轴于F.
∵∠AEC=∠ACB=∠CFB=90°,
∴∠ACE+∠BCF=90°,∠BCF+∠B=90°,
∴∠ACE=∠B,
在△AEC和△CFB中,
,
∴△AEC≌△CFB(AAS),
∴AE=CF,EC=BF,
∵A(﹣3,3),C(﹣1,0),
∴AE=CF=3,OC=1,EC=BF=2,
∴OF=CF﹣OC=2,
∴B(2,2),
13.(2021•怀化)如图,在平面直角坐标系中,已知A(﹣2,1),B(﹣1,4),C(﹣1,1),将△ABC先向右平移3个单位长度得到△A1B1C1(点A,B,C的对应点分别是A1,B1,C1),再绕C1顺时针方向旋转90°得到△A2B2C1(点A1,B1,的对应点分别是A2,B2),则A2的坐标是 (2,2) .
【答案】(2,2).
【解析】解:如图,观察图象可知A2(2,2).
14.(2021•枣庄)如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为 (1,﹣1) .
【答案】(1,﹣1).
【解析】解:连接AA′、CC′,
作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,
直线MN和直线EF的交点为P,点P就是旋转中心.
∵直线MN为:x=1,设直线CC′为y=kx+b,由题意:,
∴,
∴直线CC′为y=x+,
∵直线EF⊥CC′,经过CC′中点(,),
∴直线EF为y=﹣3x+2,
由得,
∴P(1,﹣1).
(本题可以用图象法,直接得出P坐标).
2021中考数学真题知识点分类汇编-圆填空题1(含答案): 这是一份2021中考数学真题知识点分类汇编-圆填空题1(含答案),共34页。
2021年中考数学真题知识点分类汇编-图形的旋转选择题(含答案,共54题): 这是一份2021年中考数学真题知识点分类汇编-图形的旋转选择题(含答案,共54题),共36页。
2021年中考数学真题知识点分类汇编-图形的旋转解答题(含答案,共36题): 这是一份2021年中考数学真题知识点分类汇编-图形的旋转解答题(含答案,共36题),共85页。