【解析版】2022学年北京六十三中九年级上期中数学试卷
展开
2022学年北京六十三中九年级(上)期中数学试卷
一、选择题(本题共32分,每小题4分)
1.二次函数y=x2﹣2x+3的对称轴为( )
A. x=﹣2 B. x=2 C. x=1 D. x=﹣1
2.在△ABC中,∠C=90°,cosA=,那么sinA的值等于( )
A. B. C. D.
3.二次函数y=﹣(x﹣1)2+3的图象的顶点坐标是( )
A. (﹣1,3) B. (1,3) C. (﹣1,﹣3) D. (1,﹣3)
4.把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( )
A. y=﹣(x﹣1)2﹣3 B. y=﹣(x+1)2﹣3 C. y=﹣(x﹣1)2+3 D. y=﹣(x+1)2+3
5.下列三个命题:①圆既是轴对称图形又是中心对称图形;②垂直于弦的直径平分弦;③相等的圆心角所对的弧相等.其中真命题的是( )
A. ①② B. ②③ C. ①③ D. ①②③
6.如图:在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,BD=1,AC=,则AD等于( )
A. 1 B. C. 2 D. 3
7.如图,在⊙O中,直径AB垂直于弦CD,垂足为P.若PA=2,PB=8,则CD的长为( )
A. 2 B. 4 C. 8 D.
8.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是( )
A. B. C. D.
二、填空题(本题共16分,每小题4分)
9.二次函数y=ax2+4x+a的最大值是3,则a的值是 .
10.在Rt△ABC中,∠C=90°,a=1,b=2,则cosA= .
11.过⊙O内一点M的最长弦为10 cm,最短弦长为8 cm,那么OM的长为 cm.
12.如图是二次函数y=ax2+bx+c(a≠0)在平面直角坐标系中的图象,根据图形判断①c>0;②a+b+c<0;③2a﹣b<0;④b2+8a>4ac中正确的是(填写序号) .
三、解答题(本题共30分,每小题5分)
13.计算:cos45°﹣tan60°﹣(﹣2010)0+2﹣1.
14.在△ABC中,∠A=30,tanB=,BC=.求AB的长.
15.已知:如图,△ABC中,AD⊥BC于点D,AD:BD=2:3,BD:DC=4:5,求tanC的值.
16.已知二次函数y=ax2+bx+c的图象与x轴交于(2,0)、(4,0),顶点到x轴的距离为3,求函数的解析式.
17.如图,AB是⊙O的直径,弦BC=8,∠BOC=60°,OE⊥AC,垂足为E.
(1)求OE的长;
(2)求劣弧AC的长.
18.如图,∠D=90°,BC=10,∠CBD=30°,∠A=15°.
(1)求CD的长;
(2)求tanA的值.
四、解答题(本题共20分,第19题5分,第20题5分,第21题4分,第22题6分)
19.已知二次函数y=x2+4x+3.
(1)用配方法将y=x2+4x+3化成y=a(x﹣h)2+k的形式;
(2)在平面直角坐标系中,画出这个二次函数的图象;
(3)写出当x为何值时,y>0.
20.已知:抛物线y=(m﹣1)x2+mx+m2﹣4的图象经过原点,且开口向上.
(1)确定m的值;
(2)求此抛物线的顶点坐标;
(3)当x取什么值时,y随x的增大而增大?
(4)当x取什么值时,y<0?
21.如图,海上有一个小岛P,它的周围12海里有暗礁,渔船由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东行驶,有没有触礁的危险,通过计算说明.
22.某商场将进价为2000元的冰箱以2400元出售,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的数量是y台,请写出y与x之间的函数关系式;(不要求写自变量的取值范围)
(2)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是z元,请写出z与x之间的函数关系式;(不要求写自变量的取值范围)
(3)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)
23.如图,已知抛物线C1:y=a(x+2)2﹣5的顶点为P,与x轴相交于A、B两点(点A在点B的左侧),点B的横坐标是1;
(1)求a的值;
(2)如图,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,抛物线C3的顶点为M,当点P、M关于点O成中心对称时,求抛物线C3的解析式.
24.如图,抛物线形的拱桥在正常水位时,水面AB的宽为20m.涨水时水面上升了3m,达到了警戒水位,这时水面宽CD=10m.
(1)求抛物线的解析式;
(2)当水位继续以每小时0.2m的速度上升时,再经过几小时就到达拱顶?
25.下图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,﹣4).
(1)求出图象与x轴的交点A,B的坐标;
(2)在二次函数的图象上是否存在点P,使S△PAB=S△MAB?若存在,求出P点的坐标;若不存在,请说明理由;
(3)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围.
2022学年北京六十三中九年级(上)期中数学试卷
参考答案与试题解析
一、选择题(本题共32分,每小题4分)
1.二次函数y=x2﹣2x+3的对称轴为( )
A. x=﹣2 B. x=2 C. x=1 D. x=﹣1
考点: 二次函数的性质.
分析: 根据二次函数的对称轴公式直接解答即可.
解答: 解:y=x2﹣2x+3中,
a=1,b=﹣2,c=3,
x=﹣=﹣=1.
故选C.
点评: 本题考查了二次函数的性质,熟悉二次函数的对称轴公式是解题的关键.
2.在△ABC中,∠C=90°,cosA=,那么sinA的值等于( )
A. B. C. D.
考点: 同角三角函数的关系.
分析: 根据公式cos2A+sin2A=1解答.
解答: 解:∵cos2A+sin2A=1,cosA=,
∴sin2A=1﹣=,
∴sinA=.
故选B.
点评: 本题考查公式cos2A+sin2A=1的利用.
3.二次函数y=﹣(x﹣1)2+3的图象的顶点坐标是( )
A. (﹣1,3) B. (1,3) C. (﹣1,﹣3) D. (1,﹣3)
考点: 二次函数的性质.
专题: 压轴题.
分析: 根据二次函数的顶点式一般形式的特点,可直接写出顶点坐标.
解答: 解:二次函数y=﹣(x﹣1)2+3为顶点式,其顶点坐标为(1,3).
故选B.
点评: 主要考查了求抛物线的顶点坐标的方法.
4.把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( )
A. y=﹣(x﹣1)2﹣3 B. y=﹣(x+1)2﹣3 C. y=﹣(x﹣1)2+3 D. y=﹣(x+1)2+3
考点: 二次函数图象与几何变换.
专题: 压轴题.
分析: 利用二次函数平移的性质.
解答: 解:当y=﹣x2向左平移1个单位时,顶点由原来的(0,0)变为(﹣1,0),
当向上平移3个单位时,顶点变为(﹣1,3),
则平移后抛物线的解析式为y=﹣(x+1)2+3.
故选:D.
点评: 本题主要考查二次函数y=ax2、y=a(x﹣h)2、y=a(x﹣h)2+k的关系问题.
5.下列三个命题:①圆既是轴对称图形又是中心对称图形;②垂直于弦的直径平分弦;③相等的圆心角所对的弧相等.其中真命题的是( )
A. ①② B. ②③ C. ①③ D. ①②③
考点: 命题与定理.
分析: 判断命题是否为假命题,就要判断由题设能否推出结论,能推出,则该命题为真命题;不能推出,则该命题为假命题.
解答: 解:①由于圆沿着每条直径所在直线对折后能够完全重合,所以圆是轴对称图形;由于圆绕着圆心旋转180°后能与本身重合,所以圆是中心对称图形;所以此命题为真命题,故本选项正确;
②垂直于弦的直径平分弦,符合垂径定理,是真命题,故本选项正确;
③相等的圆心角所对的弧相等,说法不确切,应为“在同圆或等圆中,相等的圆心角所对的弧相等”,故本选项错误;
故选A.
点评: 考查了命题与定理,不仅要熟悉命题的概念,还要熟悉圆的定义及相关知识,难度不大.
6.如图:在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,BD=1,AC=,则AD等于( )
A. 1 B. C. 2 D. 3
考点: 相似三角形的判定与性质.
分析: 根据∠BAC=90°,AD⊥BC,得到∠BAC=∠ADC=90°,由于∠C=∠C,证得△ABC∽△ADC,得到比例式,求得CD,根据勾股定理即可得到结论.
解答: 解:∵∠BAC=90°,AD⊥BC,
∴∠BAC=∠ADC=90°,
∵∠C=∠C,
∴△ABC∽△ADC,
∴,
∴AC2=BC•CD,
即(2)2=(1+CD)•CD,
解得:CD=4(负值舍去),
∴AD===2.
故选C.
点评: 本题考查了相似三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质定理是解题的关键.
7.如图,在⊙O中,直径AB垂直于弦CD,垂足为P.若PA=2,PB=8,则CD的长为( )
A. 2 B. 4 C. 8 D.
考点: 垂径定理;勾股定理.
分析: 连接OC,根据PA=2,PB=8可得CO=5,OP=5﹣2=3,再根据垂径定理可得CD=2CP=8.
解答: 解:连接OC,
∵PA=2,PB=8,
∴AB=10,
∴CO=5,OP=5﹣2=3,
在Rt△POC中:CP==4,
∵直径AB垂直于弦CD,
∴CD=2CP=8,
故选:C.
点评: 此题主要考查了勾股定理和垂径定理,关键是掌握平分弦的直径平分这条弦,并且平分弦所对的两条弧.
8.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是( )
A. B. C. D.
考点: 二次函数的图象;一次函数的图象.
分析: 根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.
解答: 解:当a>0时,二次函数的图象开口向上,
一次函数的图象经过一、三或一、二、三或一、三、四象限,
故A、D不正确;
由B、C中二次函数的图象可知,对称轴x=﹣>0,且a>0,则b<0,
但B中,一次函数a>0,b>0,排除B.
故选:C.
点评: 应该识记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.
二、填空题(本题共16分,每小题4分)
9.二次函数y=ax2+4x+a的最大值是3,则a的值是 ﹣1 .
考点: 二次函数的最值.
分析: 根据二次函数的最大值公式列出方程计算即可得解.
解答: 解:由题意得,=3,
整理得,a2﹣3a﹣4=0,
解得a1=4,a2=﹣1,
∵二次函数有最大值,
∴a<0,
∴a=﹣1.
故答案为:﹣1.
点评: 本题考查了二次函数的最值,易错点在于要考虑a的正负情况.
10.在Rt△ABC中,∠C=90°,a=1,b=2,则cosA= .
考点: 锐角三角函数的定义.
分析: 首先求得c的长度,然后由余弦函数的定义求解即可.
解答: 解:在Rt△ABC中,由勾股定理得:c===.
cosA==.
故答案为:.
点评: 本题主要考查的是勾股定理和锐角三角函数的定义,掌握余弦函数的定义是解题的关键.
11.过⊙O内一点M的最长弦为10 cm,最短弦长为8 cm,那么OM的长为 3 cm.
考点: 垂径定理;勾股定理.
分析: 根据垂径定理及勾股定理即可求出.
解答: 解:由已知可知,最长的弦是过M的直径AB
最短的是垂直平分直径的弦CD
已知AB=10cm,CD=8cm
则OD=5cm,MD=4cm
由勾股定理得OM=3cm.
点评: 此题主要考查学生对垂径定理及勾股定理的运用.
12.如图是二次函数y=ax2+bx+c(a≠0)在平面直角坐标系中的图象,根据图形判断①c>0;②a+b+c<0;③2a﹣b<0;④b2+8a>4ac中正确的是(填写序号) ②④ .
考点: 二次函数图象与系数的关系.
专题: 压轴题.
分析: 首先根据图象中抛物线的开口方向、对称轴的位置、与y轴交点的位置来判断出a、b、c的位置,进而判断各结论是否正确.
解答: 解:根据二次函数的图象知:
抛物线开口向上,则a>0;(⊙)
抛物线的对称轴在y轴右侧,则x=﹣>0,即b<0;(△)
抛物线交y轴于负半轴,则c<0;(□)
①由(□)知:c<0,故①错误;
②由图知:当x=1时,y<0;即a+b+c<0,故②正确;
③由(⊙)(△)可知:2a>0,﹣b>0;所以2a﹣b>0,故③错误;
④由于抛物线与x轴有两个不同的交点,则△=b2﹣4ac>0,即b2>4ac;
由(⊙)知:a>0,则8a>0;所以b2+8a>4ac,故④正确;
所以正确的结论为②④.
点评: 由图象找出有关a,b,c的相关信息以及抛物线的交点坐标,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=a﹣b+c,然后根据图象判断其值.
三、解答题(本题共30分,每小题5分)
13.计算:cos45°﹣tan60°﹣(﹣2010)0+2﹣1.
考点: 实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.
专题: 计算题.
分析: 原式第一、二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果.
解答: 解:原式=×﹣×﹣1+
=﹣1.
点评: 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
14.在△ABC中,∠A=30,tanB=,BC=.求AB的长.
考点: 解直角三角形.
分析: 作CD⊥AB于D,先解Rt△BCD,求出CD、BD;然后在Rt△ACD中利用∠A的正切求出AD的长;那么根据AB=AD+BD即可求解.
解答: 解:作CD⊥AB于D.
设CD=x,根据题意得BD=3x.
在Rt△BCD中,由勾股定理得x2+(3x)2=()2,
解得x=1.
所以CD=1,BD=3.
在Rt△ACD中,∵∠A=30°,tanA=,
∴AD==.
∴AB=AD+BD=+3.
点评: 本题考查了解直角三角形,作辅助线把三角形分解成两个直角三角形,再利用三角函数求解.
15.已知:如图,△ABC中,AD⊥BC于点D,AD:BD=2:3,BD:DC=4:5,求tanC的值.
考点: 解直角三角形.
分析: 首先根据所给比例求得AD与DC的比值,从而可求得答案.
解答: 解:∵AD:BD=2:3,BD:DC=4:5,
∴AD:BD:DC=8:12:15.
∴AD:DC=8:15.
∵AD⊥BC,
∴tanC=.
点评: 本题主要考查的是锐角三角函数的定义,根据已知条件求得AD:BD:DC=8:12:15是解题的关键.
16.已知二次函数y=ax2+bx+c的图象与x轴交于(2,0)、(4,0),顶点到x轴的距离为3,求函数的解析式.
考点: 抛物线与x轴的交点.
分析: 根据已知条件易求顶点为(3,3)或(3,﹣3).所以设该二次函数的解析式为顶点式y=a(x﹣3)2±3(a≠0).
解答: 解:由题意知,顶点为(3,3)或(3,﹣3).设抛物线的表达式为y=a(x﹣3)2±3(a≠0).
①当顶点为(3,3)时,
∵抛物线过(2,0),
∴a(2﹣3)2+3=0,
∴a=﹣3.
∴抛物线解析式为y=﹣3(x﹣3)2+3,即y=﹣3x2+18x﹣24;
②当顶点为(3,﹣3)时,∵抛物线过(2,0),
∴a(2﹣3)2﹣3=0,
∴a=3.
∴抛物线解析式为y=3(x﹣3)2﹣3,即y=3x2﹣18x+24.
点评: 本题考查了抛物线与x轴的交点.解题时,要分类讨论,以防漏解.
17.如图,AB是⊙O的直径,弦BC=8,∠BOC=60°,OE⊥AC,垂足为E.
(1)求OE的长;
(2)求劣弧AC的长.
考点: 垂径定理;三角形中位线定理;圆周角定理;弧长的计算.
分析: (1)由垂径定理知,由E是AC的中点,点O是AB的中点,则OB是△ABC的BC边对的中位线,所以OE=BC;
(2)由圆周角定理得∠A=∠BOC=30°,根据平角的意义求得∠AOC的度数,再利用弧长公式求得弧AC的长.
解答: 解:(1)∵OE⊥AC,垂足为E,AE=EC,
∵AO=B0,
∴OE=BC=4;
(2)∵∠A与∠BOC是同弧所对的圆周角与圆心角,
∴∠A=∠BOC=30°,
在Rt△AOE中,sinA=,即OA===8,
∵∠AOC=180°﹣60°=120°,
∴弧AC的长==π.
点评: 本题利用了垂径定理,三角形中位线的性质,圆周角定理,正弦的概念,弧长公式求解.
18.如图,∠D=90°,BC=10,∠CBD=30°,∠A=15°.
(1)求CD的长;
(2)求tanA的值.
考点: 解直角三角形.
分析: (1)根据30°所对的直角边是斜边的一半进行计算;
(2)根据锐角三角函数的概念,只需求得AD的长,再根据勾股定理求得BD的长即可.
解答: 解:(1)在Rt△BDC中,∠D=90°,BC=10,∠CBD=30°,
∴;
(2)在Rt△BDC中,∠D=90°,BC=10,∠CBD=30°,
∵,
∴.
∵∠CBD=30°,∠A=15°,
∴∠A=∠ACB,
.∴AB=BC=10.
∴在Rt△CAD中,.
点评: 此题综合运用了30°的直角三角形的性质、勾股定理以及锐角三角函数的概念.
四、解答题(本题共20分,第19题5分,第20题5分,第21题4分,第22题6分)
19.已知二次函数y=x2+4x+3.
(1)用配方法将y=x2+4x+3化成y=a(x﹣h)2+k的形式;
(2)在平面直角坐标系中,画出这个二次函数的图象;
(3)写出当x为何值时,y>0.
考点: 二次函数的三种形式;二次函数的图象.
专题: 应用题.
分析: (1)根据配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.
(2)画图象的步骤:列表、描点、连线;
(3)当y>0时,即图象在x轴上方的部分,再写出x的取值范围.
解答: 解:(1)y=x2+4x+3,
y=x2+4x+4﹣4+3,
y=x2+4x+4﹣1,
y=(x+2)2﹣1;
(2)列表:
x … ﹣4 ﹣3 ﹣2 ﹣1 0 …
y … 3 0 ﹣1 0 3 …
图象见图.
(3)由图象可知,当x<﹣3或x>﹣1时,y>0.
点评: 本题考查了二次函数的解析式的形式及抛物线的画法,注意:二次函数的解析式的三种形式:
(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);
(2)顶点式:y=a(x﹣h)2+k;
(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).
20.已知:抛物线y=(m﹣1)x2+mx+m2﹣4的图象经过原点,且开口向上.
(1)确定m的值;
(2)求此抛物线的顶点坐标;
(3)当x取什么值时,y随x的增大而增大?
(4)当x取什么值时,y<0?
考点: 二次函数的性质.
分析: (1)图象经过原点,即x=0时,y=0,列方程求解,同时要注意开口向上,即m﹣1>0;
(2)把得出抛物线的一般式用配方法转化为顶点式,可求顶点坐标;
(3)画抛物线时,要明确表示抛物线与x轴,y轴的交点,顶点坐标及开口方向等;
(4)观察图象,可直接得出y<0时,x的取值范围.
解答: 解:(1)由题意得,
解得m=2;
(2)∵抛物线解析式为y=x2+2x=(x+1)2﹣1,
∴顶点坐标是(﹣1,﹣1);
(3)抛物线如图如图所示;由图可知,x>﹣1时,y随x的增大而增大;
(4)由图可知,当﹣2<x<0时,y<0.
点评: 考查了二次函数的性质,抛物线的顶点式适合与确定抛物线的开口方向,顶点坐标,对称轴,最大(小)值,增减性等;抛物线的交点式适合于确定函数值y>0,y=0,y<0.
21.如图,海上有一个小岛P,它的周围12海里有暗礁,渔船由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东行驶,有没有触礁的危险,通过计算说明.
考点: 解直角三角形的应用-方向角问题.
分析: 过点P作PD⊥AB于D,在Rt△PBD和Rt△PAD中,根据三角函数AD,BD就可以PD表示出来,根据AB=12海里,就得到一个关于PD的方程,求得PD.从而可以判断如果渔船不改变航线继续向东航行,没有触礁危险.
解答: 解:没有触礁危险.
理由:过点P作PD⊥AC,交AB延长线于D.
设PD为x,在Rt△PBD中,
∠PBD=90°﹣45°=45°.
∴BD=PD=x.
在Rt△PAD中,
∵∠PAD=90°﹣60°=30°
∴AD==x,
∵AD=AB+BD,
∴x=12+x
∴x==6(+1),
∵6(+1)>12,
∴渔船不改变航线继续向东航行,没有触礁危险.
点评: 本题主要考查解直角三角形在实际问题中的应用,构造直角三角形是解题的前提和关键.
22.某商场将进价为2000元的冰箱以2400元出售,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的数量是y台,请写出y与x之间的函数关系式;(不要求写自变量的取值范围)
(2)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是z元,请写出z与x之间的函数关系式;(不要求写自变量的取值范围)
(3)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
考点: 二次函数的应用;一元二次方程的应用.
专题: 销售问题.
分析: (1)用x占50的分数乘以4,再加上8台,整理即可得解;
(2)用每一台冰箱的利润乘以一天销售台数,整理即可得解;
(3)根据利润的函数解析式,令z=4800,解关于x的一元二次方程,再根据使百姓得到实惠解答.
解答: 解:(1)根据题意得:y=8+4×=x+8;
(2)根据题意得:z=(400﹣x)•(x+8)=﹣x2+24x+3200;
(3)根据题意得:﹣x2+24x+3200=4800,
整理,x2﹣300x+20000=0,
(x﹣100)(x﹣200)=0,
解得,x1=200,x2=100,
∵要使这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,
∴x=200.
答:要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠每台应降200元.
点评: 本题主要考查了二次函数的实际应用,一元二次方程的应用,(1)根据x所占50的分数列出销售台数是解题的关键,(3)要注意使百姓得到实惠的条件限制.
五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)
23.如图,已知抛物线C1:y=a(x+2)2﹣5的顶点为P,与x轴相交于A、B两点(点A在点B的左侧),点B的横坐标是1;
(1)求a的值;
(2)如图,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,抛物线C3的顶点为M,当点P、M关于点O成中心对称时,求抛物线C3的解析式.
考点: 二次函数综合题.
专题: 综合题.
分析: (1)将B点坐标代入抛物线C1的解析式中,即可求得待定系数a的值.
(2)在抛物线平移过程中,抛物线的开口大小没有发现变化,变化的只是抛物线的位置和开口方向,所以C3的二次项系数与C1的互为相反数,而C3的顶点M与C1的顶点P关于原点对称,P点坐标易求得,即可得到M点坐标,从而求出抛物线C3的解析式.
解答: 解:(1)∵点B是抛物线与x轴的交点,横坐标是1,
∴点B的坐标为(1,0),
∴当x=1时,0=a(1+2)2﹣5,
∴.
(2)设抛物线C3解析式为y=a′(x﹣h)2+k,
∵抛物线C2与C1关于x轴对称,且C3为C2向右平移得到,
∴,
∵点P、M关于点O对称,且点P的坐标为(﹣2,﹣5),
∴点M的坐标为(2,5),
∴抛物线C3的解析式为y=﹣(x﹣2)2+5=﹣x2+x+.
点评: 此题主要考查的是二次函数解析式的确定、二次函数图象的几何变化以及系数与函数图象的关系,需要熟练掌握.
24.如图,抛物线形的拱桥在正常水位时,水面AB的宽为20m.涨水时水面上升了3m,达到了警戒水位,这时水面宽CD=10m.
(1)求抛物线的解析式;
(2)当水位继续以每小时0.2m的速度上升时,再经过几小时就到达拱顶?
考点: 二次函数的应用.
分析: (1)先设抛物线的解析式为y=ax2,再找出几个点的坐标,代入解析式后可求解;
(2)由(1)可知抛物线的解析式,把b=﹣1代入即可求出CD的长度,进而求出时间.
解答: 解:(1)设所求抛物线的解析式为:y=ax2.
设D(5,b),则B(10,b﹣3),
把D、B的坐标分别代入y=ax2得:,
解得,
∴y=﹣x2;
(2)∵b=﹣1,
∴拱桥顶O到CD的距离为1,=5小时.
所以再持续5小时到达拱桥顶.
点评: 本题主要考查了点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题
25.下图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,﹣4).
(1)求出图象与x轴的交点A,B的坐标;
(2)在二次函数的图象上是否存在点P,使S△PAB=S△MAB?若存在,求出P点的坐标;若不存在,请说明理由;
(3)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围.
考点: 二次函数综合题.
专题: 压轴题.
分析: (1)由顶点坐标确定m、k的值,再令y=0求得图象与x轴的交点坐标;
(2)设存在这样的P点,由于底边相同,求出△PAB的高|y|,将y求出代入二次函数表达式求得P点坐标;
(3)画出翻转后新的函数图象,由直线y=x+b,b<1确定出直线移动的范围,求出b的取值范围.
解答: 解:(1)因为M(1,﹣4)是二次函数y=(x+m)2+k的顶点坐标,
所以y=(x﹣1)2﹣4=x2﹣2x﹣3,
令x2﹣2x﹣3=0,
解之得x1=﹣1,x2=3.
∴A,B两点的坐标分别为A(﹣1,0),B(3,0);(4分)
(2)在二次函数的图象上存在点P,使,
设P(x,y),
则,
又∵,
∴.
∵二次函数的最小值为﹣4,
∴y=5.
当y=5时,x=﹣2或x=4.
故P点坐标为(﹣2,5)或(4,5);
(3)如图,当直线y=x+b经过A(﹣1,0)时﹣1+b=0,可得b=1,又因为b<1,
故可知y=x+b在y=x+1的下方,
当直线y=x+b经过点B(3,0)时,3+b=0,则b=﹣3,
由图可知符合题意的b的取值范围为﹣3<b<1时,直线y=x+b(b<1)与此图象有两个公共点.
点评: 本题考查了由函数图象确定坐标,以及给出面积关系求点的坐标和直线与图象的交点问题,综合体现了数形结合的思想.
2017-2018学年河南省安阳六十三中八年级(上)期中数学试卷(解析版): 这是一份2017-2018学年河南省安阳六十三中八年级(上)期中数学试卷(解析版),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年北京三中九年级(上)期中数学试卷(含解析): 这是一份2022-2023学年北京三中九年级(上)期中数学试卷(含解析),共25页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2022-2023学年北京六十六中九年级(上)期中数学试卷(含答案解析): 这是一份2022-2023学年北京六十六中九年级(上)期中数学试卷(含答案解析),共20页。试卷主要包含了【答案】C,【答案】D,【答案】A,【答案】B,【答案】等内容,欢迎下载使用。