年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    新人教A版高中数学必修第二册第九章统计单元检测含解析

    新人教A版高中数学必修第二册第九章统计单元检测含解析第1页
    新人教A版高中数学必修第二册第九章统计单元检测含解析第2页
    新人教A版高中数学必修第二册第九章统计单元检测含解析第3页
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新人教A版高中数学必修第二册第九章统计单元检测含解析

    展开

    这是一份新人教A版高中数学必修第二册第九章统计单元检测含解析,共12页。
    单元素养检测(四)  (第九章)(120分钟 150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.一个容量为80的样本中,数据的最大值为152,最小值为60,组距为10,应将样本数据分为 (  )A.10组   B.9组   C.8组   D.7组【解析】选A.由题意可知,=9.2,故应将数据分为10组.【补偿训练】   一个容量为32的样本,已知某组样本的频率为0.125,则该组样本的频数为 (  )A.2    B.4    C.6    D.8【解析】选B.频率=,则频数=频率×样本容量=0.125×32=4.2.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为me,众数为m0,平均值为,则              (  )A.me=m0=    B.me=m0<C.me<m0<    D.m0<me<【解析】选D.由题目所给的统计图可知,30个数据按大小顺序排列好后,中间两个数为5,6,故中位数为me==5.5.又众数为m0=5,平均值==,所以m0<me<.3.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个长方形的面积和的,且样本容量为140,则中间一组的频数为              (  )A.28   B.40   C.56   D.60【解析】选B.设中间一组的频数为x,则其他8组的频数和为x,所以x+x=140,解得x=40.4.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,则由此求出的平均数与实际平均数的差是              (  )A.3.5    B.-3   C.3   D.-0.5【解析】选B.少输入90,=3,平均数少3,求出的平均数减去实际平均数等于-3.5.已知某地区中小学生人数和近视情况分别如图①和图②所示.为了解该地区中小学生的近视形成原因,用分层随机抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为(  )A.200,20    B.100,20C.200,10    D.100,10【解析】选A.该地区中小学生总人数为3 500+2 000+4 500=10 000,则样本容量为10 000×2%=200,其中抽取的高中生近视人数为2 000×2%×50%=20.6.某市刑警队对警员进行技能测试,测试成绩分为优秀、良好、合格三个等级,测试结果如下表:(单位:人) 优秀良好合格4010525a155若按优秀、良好、合格三个等级分层,从中抽取40人,成绩为良好的有24人,则a等于 (  )A.10   B.15   C.20    D.30【解析】选A.设该市刑警队共n人,由题意得=,解得,n=200;则a=200-(40+105+15+25+5)=10.7.某工厂生产A,B,C,D四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层随机抽样方法抽出一个容量为n的样本,样本中A种型号有16件,那么此样本的容量n为              (  )A.88   B.44   C.22   D.11【解析】选A.在分层抽样中,每一层所抽的个体数的比例与总体中各层个体数的比例是一致的.所以,样本容量n=×16=88.8.某中学从某次考试成绩中抽取若干名学生的分数,并绘制成如图所示的频率分布直方图,样本数据分组为[50,60),[60,70),[70,80),[80,90),[90,100].若用分层抽样的方法从样本中抽取分数在[80,100]范围内的数据16个,则其中分数在[90,100]范围内的样本数据有              (  )A.5个   B.6个   C.8个   D.10个【解析】选B.分数段在[80,100]范围内占所有分数段的百分比为(0.025+0.015) ×10=0.4,其中分数在[90,100]范围内的人数占所有分数段的百分比为0.015 ×10=0.15,因此分数在[90,100]范围内占分数在[80,100]范围内的百分比为=,因此分数在[90,100]范围内的样本数据有16×=6.二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得3分,有选错的得0分)9.三个同学的数学测试成绩及班级平均分关系如图,则下列说法正确的是 (  )A.王伟同学的数学学习成绩高于班级平均水平,且较稳定B.张诚同学的数学学习成绩波动较大C.赵磊同学的数学学习成绩低于班级平均水平D.在6次测验中,每一次成绩都是王伟第1,张诚第2,赵磊第3【解析】选ABC.从图中看出王伟同学的数学学习成绩始终高于班级平均水平,学习情况比较稳定而且成绩优秀.张诚同学的数学成绩不稳定,总是在班级平均水平上下波动,而且波动幅度较大.赵磊同学的数学学习成绩低于班级平均水平,但他的成绩曲线呈上升趋势,表明他的数学成绩在稳步提高,第6次考试张诚没有赵磊的成绩好.故D错误.10.在某次测量中得到的A样本数据如下:52,54,54,56,56,56,55,55,55,55.若B样本数据恰好是A样本数据都加6后所得数据,则A,B两样本的下列数字特征对应相同的是              (  )A.方差   B.平均数   C.中位数   D.标准差【解析】选AD.A样本的平均数为54.8,B样本的平均数为60.8,B选项错误;A样本的中位数为55,B样本的中位数为61,C选项错误;事实上,在A样本的每个数据上加上6后形成B样本,样本的稳定性不变,因此两个样本的方差相同,标准差相等.11.为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述正确的是              (  )A.甲的数据分析素养优于乙B.乙的数据分析素养优于数学建模素养C.甲的六大素养整体水平优于乙D.甲的六大素养中数学运算最强【解析】选ABC.对于A,甲的数据分析素养为100分,乙的数据分析素养为80分,故甲的数据分析素养优于乙,故A正确;对于B,乙的数据分析素养为80分,数学建模素养为60分,故乙的数据分析素养优于数学建模素养,故B正确;对于C,甲的六大素养整体水平平均得分为==90,乙的六大素养整体水平平均得分为=,故C正确;对于D,甲的六大素养中数学运算为80分,不是最强的,故D错误.12.为了反映各行业对仓储物流业务需求变化的情况,以及重要商品库存变化的动向,中国物流与采购联合会和中储发展股份有限公司通过联合调查,制定了中国仓储指数.由2017年1月至2018年7月的调查数据得出的中国仓储指数,绘制出如图所示的折线图.根据该折线图,下列结论不正确的是 (  )A.2017年各月的仓储指数最大值是在3月份B.2018年1月至7月的仓储指数的中位数为55C.2018年1月与4月的仓储指数的平均数为52D.2017年1月至4月的仓储指数相对于2018年1月至4月,波动性更大【解析】 选ABC.2017年各月的仓储指数最大值是在11月份,所以A是错误的;由图可知,2018年1月至7月的仓储指数的中位数约为53,所以B是错误的;2018年1月与4月的仓储指数的平均数为=53,所以C是错误的;由图可知,2017年1月至4月的仓储指数比2018年1月至4月的仓储指数波动更大.三、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.某中学高一年级有400人,高二年级有320人,高三年级有280人,若每人被抽到的可能性为20%,用随机数法在该中学抽取容量为n的样本,则n等于________. 【解析】=20%,解得n=200.答案:200【补偿训练】   某社区对居民进行某车展知晓情况的分层随机抽样调查.已知该社区的青年人、中年人和老年人分别有800人、1 600人、1 400人.若在老年人中的抽样人数是70,则在中年人中的抽样人数应该是________.  【解析】依题意,应有=,解得x=80,即在中年人中应抽取80人.答案:8014.一个容量为100的样本,其数据的分组与各组的频数如下:组别[0,10)[10,20)[20,30)[30,40)[40,50)[50,60)[60,70]频数1213241516137则样本数据在[10,40)上的频率为________. 【解析】频率为=0.52.答案:0.5215.某工厂从生产的一批产品中随机抽出一部分,对这些产品的一项质量指标进行了检测,整理检测结果得到如下频率分布表:质量指标分组[10,30)[30,50)[50,70]频率0.10.60.3据此可估计这批产品的此项质量指标的方差为________. 【解析】由题意得这批产品的此项质量指标的平均数为20×0.1+40×0.6+60×0.3=44,故方差为(20-44)2×0.1+(40-44)2×0.6+(60-44)2×0.3=144.答案:14416.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如图所示).由图中数据可知a=________.若要从身高在[120,130), [130,140),[140,150]三组内的学生中,用分层随机抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.  【解析】由10×(0.005+0.035+a+0.020+0.010)=1,得a=0.03,从而这三组的频数之比为0.03 0.020.01=321,故从身高在[140,150]内的学生中选取的人数应为18×=3.答案:0.03 3【补偿训练】   为了解某校学生的视力情况,随机抽查了该校的100名学生,得到如图所示的频率分布直方图.由于不慎将部分数据丢失,但知道前4组的频数和为40,后6组的频数和为87.设最大频率为a,视力在4.5到5.2之间的学生数为b,则a,b的值分别为              (  )A.0.27,96      B.0.27,83C.2.7,78     D.2.7,83【解析】选A.由频率分布直方图知组距为0.1,前3组频数和为13,则4.6到4.7之间的频数最大为27,故最大频率a=0.27,视力在4.5到5.2之间的频率为0.96,故视力在4.5到5.2之间的学生数b=96.四、解答题(本大题共6个小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(10分)中小学生的视力状况受到全社会的广泛关注.某市有关部门对全市4万名初中生的视力状况进行一次抽样调查,所得到的有关数据绘制成频率分布直方图如图所示.从左至右五个小组的频率之比依次是2∶4∶9∶7∶3,第五小组的频数是30.(1)本次调查共抽取了多少名学生?(2)如果视力在[4.85,5.45)属正常,那么全市初中生视力正常的约有多少人?【解析】(1)频率之比等于频数之比.设第一小组的频数为2k,则其余各组的频数依次为4k,9k,7k,3k,于是3k=30,解得k=10.则2k=20,4k=40,9k=90,7k=70,故本次调查的抽样总人数为20+40+90+70+30=250.(2)因为视力在[4.85,5.45)范围内的有100人,所以频率为=0.4.所以全市初中生视力正常的约有40 000×0.4=16 000(人).18.(12分)某城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,计划抽取一个容量为21的样本,按照分层随机抽样方法抽取时,各种百货商店分别要抽取多少家?写出抽样过程.【解析】(1)样本容量与总体的个体数的比为=.(2)确定各种商店要抽取的数目:大型:20×=2(家),中型:40×=4(家),小型:150×=15(家).(3)采用简单随机抽样在各层中抽取大型:2家;中型:4家;小型:15家.这样便得到了所要抽取的样本.19.(12分)某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%,登山组的职工占参加活动总人数的,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同的年龄层的职工对本次活动的满意程度,现用分层随机抽样的方法从参加活动的全体职工中抽取容量为200的样本.试求:(1)游泳组中,青年人、中年人、老年人分别所占的比例.(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.【解析】(1)设登山组人数为x,游泳组中,青年人、中年人、老年人各占比例分别为a,b,c,则有=47.5%,=10%.解得b=50%,c=10%.故a=1-50%-10%=40%.即游泳组中,青年人、中年人、老年人各占比例分别为40%,50%,10%.(2)游泳组中,抽取的青年人人数为200××40%=60;抽取的中年人人数为200××50%=75;抽取的老年人人数为200××10%=15.20.(12分)两台机床同时生产一种零件,在10天中,两台机床每天的次品数如下:甲:1,0,2,0,2,3,0,4,1,2.乙:1,3,2,1,0,2,1,1,0,1.(1)哪台机床次品数的平均数较小?(2)哪台机床的生产状况比较稳定?【解析】(1)=(1+0+2+0+2+3+0+4+1+2)×=1.5,=(1+3+2+1+0+2+1+1+0+1)×=1.2.因为>,所以乙机床次品数的平均数较小.(2)=×[(1-1.5)2+(0-1.5)2+(2-1.5)2+(0-1.5)2+(2-1.5)2+(3-1.5)2+(0-1.5)2+(4-1.5)2+(1-1.5)2+(2-1.5)2]=1.65,同理=0.76,因为>,所以乙机床的生产状况比较稳定.【补偿训练】   已知样本数据由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且样本的中位数为10.5,若使该样本的方差最小,则a,b的值分别为              (  )A.10,11        B.10.5,9.5C.10.4,10.6     D.10.5,10.5【解析】选D.由于样本共有10个值,且中间两个数为a,b依题意,得=10.5,即b=21-a.因为平均数为(2+3+3+7+a+b+12+13.7+18.3+20)÷10=10,所以要使该样本的方差最小,只需(a-10)2+(b-10)2最小.又(a-10)2+(b-10)2=(a-10)2+(21-a-10)2=2a2-42a+221,所以当a=-=10.5时,(a-10)2+(b-10)2最小,此时b=10.5.21.(12分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)估计居民月均用水量的中位数.【解析】(1)由频率分布直方图,可知,月均用水量在[0,0.5)的频率为0.08×0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+ 0.02)=0.5×a+0.5×a,解得a=0.30.(2)由(1)可知,100位居民每人月均用水量不低于3吨的频率为0.06+0.04+ 0.02=0.12.由以上样本的频率,可以估计全市30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+ 0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以2x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.22.(12分)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:组号分组频数1[0,2)62[2,4)83[4,6)174[6,8)225[8,10)256[10,12)127[12,14)68[14,16)29[16,18)2合计 100(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的频率;(2)求频率分布直方图中的a,b的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论)?【解析】(1)根据频数分布表,100名学生中,课外阅读时间不少于12小时的学生共有6+2+2=10名,所以样本中的学生课外阅读时间少于12小时的频率是1-=0.9.(2)课外阅读时间落在[4,6)的人数为17人,频率为0.17,所以,a===0.085,同理,b==0.125.(3)样本中的100名学生课外阅读时间的平均数在第4组.【补偿训练】   某班100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值.(2)根据频率分布直方图,估计这100名学生语文成绩的平均分.(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x∶y1∶12∶13∶44∶5【解析】(1)由频率分布直方图知(2a+0.02+0.03+0.04)×10=1,解得a=0.005.(2)由频率分布直方图知这100名学生语文成绩的平均分为55×0.005×10+65×0.04×10+75×0.03×10+85×0.02×10+95×0.005×10=73(分).(3)由频率分布直方图知语文成绩在[50,60),[60,70),[70,80),[80,90)各分数段的人数依次为0.005×10×100=5;0.04×10×100=40;0.03×10×100=30; 0.02×10×100=20.由题中给出的比例关系知数学成绩在上述各分数段的人数依次为5;40×=20;30×=40;20×=25.故数学成绩在[50,90)之外的人数为100-(5+20+ 40+25)=10. 

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map