华师大版2 不等式的简单变形教案设计
展开
这是一份华师大版2 不等式的简单变形教案设计,共2页。教案主要包含了 分析教材,学情分析,教法分析,教学程序和设想等内容,欢迎下载使用。
今天说课的内容是华师大版七年级下册第八章第二节不等式的基本性质
一、 分析教材(说教材)
(一)教材地位和作用:
不等式的基本性质是数学的主要内容之一,在数学中占着重要地位。它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容,起到重要的奠基作用。
(二)学习目标
1掌握不等式的三条基本性质以及推论,能够运用不等式的基本性质将不等式变形解决简单的问题。
2进一步掌握作差比较法比较实数的大小。
3通过教学,培养学生合作交流的意识和大胆猜想、乐于探究的良好思维品质。
(三)教学重点难点
不等式的三条基本性质及其应用是重点,
不等式基本性质3的探索与运用是难点
二、学情分析(说学法)
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。所以我们必须从现实生活入手,首先来提高学生的学习兴趣;其次要一步一个脚印,通过师生互动、通过小组研究来降低学习难度,最后达到学习要求。
三、教法分析(说教法)
本节课主要采用分组探究的教学方法。坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,通过引导回顾玩跷跷板的经验,师生共同探究天平两侧物体质量的大小,引导学生感性地认识不等式的三条基本性质。
四、教学程序和设想(说教学程序)
(一)展示课件创设情景引入新课
我创设了天平情境问题(如图1),让学生观察课件,说出物体a和c哪个质量更大一些,由此判断:如果a>b,b>c,那么a和c的大小关系如何?这是感性认识。
接下来运用分析法从理论上证明了性质1的正确性,也就是证明了不等式的传递性,即如果 a>b,b>c,则 a>c.
图1
(二)创设情景说明性质2
为了说明性质2,我设置了这样的情景(如图2),然后提出问题: 如果 a>b,那么 a+c与b+c.大小关系如何:
图2
很明显,学生能够得答案,即:如果 a>b,则 a+c>b+c 。同上面一样,我和学生运用了做差比较法对该性质从理论上做了证明。
接下来为了说明性质2的推论,我设置了这样一个问题,如果 a+b>c,那么a>c-b吗?我运用综合法和性质2对推论1即:如果 a+b>c,那么 a>c-b 做了证明
(三)小组合作探究性质3
运用作差比较法在理论上证明了性质3,即:如果 a>b,c>0,那么 a c>b c;如果 a>b,c<0,那么 a c<b c 。即得到了不等式的乘法法则:如果不等式两边都乘同一个正数,则不等号的方向不变;如果都乘同一个负数,则不等号的方向改变.
(四)小结收尾总结要点
最后回顾、总结、矫正、提高,帮助学生形成本节课的知识网络,特别要总结强调性质3。
(五)作业布置以此巩固所学知识
相关教案
这是一份数学七年级下册第8章 一元一次不等式8.2 解一元一次不等式2 不等式的简单变形教案设计,共4页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。
这是一份华师大版七年级下册3 解一元一次不等式教案,共2页。教案主要包含了教材分析,学生情况分析,解决思路等内容,欢迎下载使用。
这是一份初中数学华师大版七年级下册2 不等式的简单变形教案设计,共5页。