2022届河南省顶级名校高三考前真题重组导向卷(三)理科数学试题及答案
展开2022届高三考前真题重组导向卷(三)
理科数学
一.选择题
1.已知,是虚数单位,若,,则( )
A.1或 B.或 C. D.
2.设集合则=( )
A. B. C. D.
3.下列命题为真命题的是( )
A.且 B.或
C., D.,
4.已知函数的定义域为,为偶函数,为奇函数,则( )
A. B. C. D.
5.两人进行乒乓球比赛,先赢三局着获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( )
A.10种 B.15种 C.20种 D.30种
6.在平面直角坐标系中,已知向量点满足.曲线,区域.若为两段分离的曲线,则( )
A. B. C. D.
7.设三棱锥的底面是正三角形,侧棱长均相等,是棱上的点(不含端点),记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则( )
A. B.
C. D.
8.已知函数,.若在区间内没有零点,则的取值范围是( )
A. B. C. D.
9.已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为( )
A. B. C. D.
10.若过点可以作曲线的两条切线,则( )
A. B. C. D.
11.已知的内角,面积满足所对的边,则下列不等式一定成立的是
A. B.
C. D.
12.设函数满足则时,
A.有极大值,无极小值 B.有极小值,无极大值
C.既有极大值又有极小值 D.既无极大值也无极小值
二.填空题
13.已知 的展开式中含有 项的系数是54,则n=_____________.
14.设函数则满足的x的取值范围是____________
15.设双曲线x2–=1的左、右焦点分别为F1,F2.若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是_______.
16.已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为____.
三.解答题
17.已知首项都是1的两个数列(),满足.
(1)令,求数列的通项公式;
(2)若,求数列的前n项和
18.已知直三棱柱中,侧面为正方形,,E,F分别为和的中点,D为棱上的点.
(1)证明:;
(2)当为何值时,面与面所成的二面角的正弦值最小?
19. 在核酸检测中, “k合1” 混采核酸检测是指:先将k个人的样本混合在一起进行1次检测,如果这k个人都没有感染新冠病毒,则检测结果为阴性,得到每人的检测结果都为阴性,检测结束:如果这k个人中有人感染新冠病毒,则检测结果为阳性,此时需对每人再进行1次检测,得到每人的检测结果,检测结束.
现对100人进行核酸检测,假设其中只有2人感染新冠病毒,并假设每次检测结果准确.
(I)将这100人随机分成10组,每组10人,且对每组都采用“10合1”混采核酸检测.
(i)如果感染新冠病毒的2人在同一组,求检测的总次数;
(ii)已知感染新冠病毒的2人分在同一组的概率为.设X是检测的总次数,求X的
分布列与数学期望E(X).
(II)将这100人随机分成20组,每组5人,且对每组都采用“5合1”混采核酸检测.设Y是检测的总次数,试判断数学期望E(Y)与(I)中E(X)的大小.(结论不要求证明)
20.已知抛物线:的焦点为,过且斜率为的直线与抛物线交于,两点,在轴的上方,且点的横坐标为4.
(1)求抛物线的标准方程;
(2)设点为抛物线上异于,的点,直线与分别交抛物线的准线于,两点,轴与准线的交点为,求证:为定值,并求出定值.
21.已知函数有两个零点.
(Ⅰ)求a的取值范围;
(Ⅱ)设x1,x2是的两个零点,证明:.
22.已知曲线C1,C2的参数方程分别为C1:(θ为参数),C2:(t为参数).
(1)将C1,C2的参数方程化为普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.
23.已知.
(1)当时,求不等式的解集;
(2)若时不等式成立,求的取值范围.
理科数学答案
1-4.ACDB
5【答案】C
【解析】
【详解】
试题分析:第一类:三局为止,共有种情形;第二类:四局为止,共有种情形;第三类:五局为止,共有种情形;故所有可能出现的情形共有种情形故选C.
6.【答案】A
试题分析:设,则 ,,区域 表示的是平面上的点到点的距离从到之间,如下图中的阴影部分圆环,要使 为两段分离的曲线,则,故选A.
7.B【详解】
方法1:如图为中点,在底面的投影为,则在底面投影在线段上,过作垂直,易得,过作交于,过作,交于,则,则,即,,即,综上所述,答案为B.
方法2:由最小角定理,记的平面角为(显然)
由最大角定理,故选B.
方法3:(特殊位置)取为正四面体,为中点,易得
,故选B.
8.【答案】D试题分析:,,所以,
因此,选D.
9.【答案】D详解:因为为等腰三角形,,所以PF2=F1F2=2c,
由斜率为得,,
由正弦定理得,
所以,故选D.
10【答案】D在曲线上任取一点,对函数求导得,
所以,曲线在点处的切线方程为,即,
由题意可知,点在直线上,可得,
令,则.
当时,,此时函数单调递增,
当时,,此时函数单调递减,
所以,,
由题意可知,直线与曲线的图象有两个交点,则,
当时,,当时,,作出函数的图象如下图所示:
由图可知,当时,直线与曲线的图象有两个交点.
11.【答案】A
试题分析:由题设得:
(1)
由三角形面积公式及正弦定理得:
所以
又因为,所以
所以恒成立,所以
故选A.
12.【答案】D
函数满足,
,令,
则,
由,得,令,
则
在上单调递减,在上单调递增,
的最小值为.
又在单调递增,
既无极大值也无极小值,故选D.
13.【答案】
14.【答案】
由题意得: 当时,恒成立,即;当时, 恒成立,即;当时,,即.综上,x的取值范围是.
15.【答案】.
试题分析:由已知得,则,设是双曲线上任一点,由对称性不妨设在双曲线的右支上,则,,,为锐角,则,即,解得,所以,则.
16.【答案】不妨设球的半径为4,球的表面积为,
因为圆锥底面面积是这个球面面积的,
所以圆锥的底面积为,圆锥的底面半径为;
由几何体的特征知球心到圆锥底面的距离,球的半径以及圆锥底面的半径三者可以构成一个直角三角形,
由此可以求得球心到圆锥底面的距离是,
所以圆锥体积较小者的高为,同理可得圆锥体积较大者的高为;
所以这两个圆锥中,体积较小者的高与体积较大者的高的比值为.
故答案为:
17(1)因为,
所以
所以数列是以首项,公差的等差数列,故
(2)由知
于是数列前n项和
相减得
所以
18.(1)[方法一]:几何法
因为,所以.
又因为,,所以平面.又因为,构造正方体,如图所示,
过E作的平行线分别与交于其中点,连接,
因为E,F分别为和的中点,所以是BC的中点,
易证,则.
又因为,所以.
又因为,所以平面.
又因为平面,所以.
[方法二] 【最优解】:向量法
因为三棱柱是直三棱柱,底面,
,,,又,平面.所以两两垂直.
以为坐标原点,分别以所在直线为轴建立空间直角坐标系,如图.
,.
由题设().
因为,
所以,所以.
(2)[方法一]【最优解】:向量法
设平面的法向量为,
因为,
所以,即.
令,则
因为平面的法向量为,
设平面与平面的二面角的平面角为,
则.
当时,取最小值为,
此时取最大值为.
所以,此时.
[方法二] :几何法
如图所示,延长交的延长线于点S,联结交于点T,则平面平面.
作,垂足为H,因为平面,联结,则为平面与平面所成二面角的平面角.
设,过作交于点G.
由得.
又,即,所以.
又,即,所以.
所以.
则,
所以,当时,.
19.(1)①对每组进行检测,需要10次;再对结果为阳性的组每个人进行检测,需要10次;所以总检测次数为20次;
②由题意,可以取20,30,
,,
则的分布列:
所以;
(2)由题意,可以取25,30,
两名感染者在同一组的概率为,不在同一组的概率为,
则.
20(1)由题意得:,
因为点的横坐标为4,且在轴的上方,
所以,
因为的斜率为,
所以,整理得:,
即,得,
抛物线的方程为:.
(2)由(1)得:,,淮线方程,
直线的方程:,
由解得或,于是得.
设点,又题意且,
所以直线:,令,得,
即,
同理可得:,
.
21.试题解析:(Ⅰ).
(Ⅰ)设,则,只有一个零点.
(Ⅱ)设,则当时,;当时,.所以在单调递减,在单调递增.
又,,取满足且,则
,
故存在两个零点.
(Ⅲ)设,由得或.
若,则,故当时,,因此在单调递增.又当时,所以不存在两个零点.
若,则,故当时,;当时,.因此在单调递减,在单调递增.又当时,,所以不存在两个零点.
综上,的取值范围为.
(Ⅱ)不妨设,由(Ⅰ)知,,在单调递减,所以等价于,即.
由于,而,所以
.
设,则.
所以当时,,而,故当时,.
从而,故.
22.(1)[方法一]:消元法
由得的普通方程为.
由参数方程可得,
两式相乘得普通方程为.
[方法二]【最优解】:代入消元法
由得的普通方程为,
由参数方程可得,
代入中并化简得普通方程为.
(2)[方法一]:几何意义+极坐标
将代入中解得,故P点的直角坐标为.
设P点的极坐标为,
由得,,.
故所求圆的直径为,
所求圆的极坐标方程为,即.
[方法二]:
由得所以P点的直角坐标为.
因为.
设圆C的极坐标方程为,所以,
从而,解得.
故所求圆的极坐标方程为.
[方法三]:利用几何意义
由得所以P点的直角坐标为,
化为极坐标为,其中.
如图,设所求圆与极轴交于E点,则,
所以,所以所求圆的极坐标方程为.
[方法四]【最优解】:
由题意设所求圆的圆心直角坐标为,则圆的极坐标方程为.
联立得解得.
设Q为圆与x轴的交点,其直角坐标为,O为坐标原点.
又因为点都在所求圆上且为圆的直径,
所以,解得.
所以所求圆的极坐标方程为.
[方法五]利用几何意义求圆心
由题意设所求圆的圆心直角坐标为,
则圆的极坐标方程为.
联立得,
即P点的直角坐标为.
所以弦的中垂线所在的直线方程为,
将圆心坐标代入得,解得.
所以所求圆的极坐标方程为.
23.详解:(1)当时,,即
故不等式的解集为.
(2)当时成立等价于当时成立.
若,则当时;
若,的解集为,所以,故.
综上,的取值范围为.
河南省顶级名校2022届高三5月全真模拟考试理科数学试题-: 这是一份河南省顶级名校2022届高三5月全真模拟考试理科数学试题-,共21页。
河南省顶级名校2022届高三5月全真模拟考试理科数学试题-: 这是一份河南省顶级名校2022届高三5月全真模拟考试理科数学试题-,共21页。试卷主要包含了请将答案正确填写在答题卡上,的展开式中的常数项为,函数在下列区间单调递减的是,设,为两个平面,则的充要条件是,记为等差数列的前项和,且,则等内容,欢迎下载使用。
2022年河南省顶级名校高三考前真题重组导向卷(三)理科数学试题含答案: 这是一份2022年河南省顶级名校高三考前真题重组导向卷(三)理科数学试题含答案,共9页。