人教B版 (2019)选择性必修 第一册2.6.2 双曲线的几何性质教案
展开双曲线的几何性质
【教学目标】
1.了解双曲线的简单几何性质,如范围、对称性、顶点、渐近线和离心率等。
2.能用双曲线的简单几何性质解决一些简单问题。
【教学重难点】
重点:双曲线的几何性质及初步运用。
难点:双曲线的渐近线。
【教学过程】
一、复习提问引入新课
1.椭圆有哪些几何性质,是如何探讨的?
2.双曲线的两种标准方程是什么?
下面我们类比椭圆的几何性质来研究它的几何性质。
二、类比联想得出性质(范围、对称性、顶点)
引导学生完成下列关于椭圆与双曲线性质的表格。
三、渐近线
双曲线的范围在以直线和为边界的平面区域内,那么从x,y的变化趋势看,双曲线与直线具有怎样的关系呢?
根据对称性,可以先研究双曲线在第一象限的部分与直线的关系。
双曲线在第一象限的部分可写成:
当x逐渐增大时,|MN|逐渐减小,x无限增大,|MN|接近于零,|MQ|也接近于零,就是说,双曲线在第一象限的部分从射线ON的下方逐渐接近于射线ON。
在其他象限内也可以证明类似的情况。
现在来看看实轴在y轴上的双曲线的渐近线方程是怎样的?由于焦点在y轴上的双曲线方程是由焦点在x轴上的双曲线方程,将x、y字母对调所得到,自然前者渐近线方程也可由后者渐近线方程将x、y字母对调所得,所以,双曲线的渐近线方程是,即。
定义:直线叫做双曲线 的渐近线;直线叫做双曲线 的渐近线。
这样,我们就完满地解决了画双曲线远处趋向问题,从而可比较精确地画出双曲线。例如:画双曲线,先作渐近线,再描几个点,就可以随后画出比较精确的双曲线。
四、离心率
由于正确认识了渐近线的概念,对于离心率的直观意义也就容易掌握了,为此,介绍一下双曲线的离心率以及它对双曲线的形状的影响:
变得开阔,从而得出:双曲线的离心率越大,它的开口就越开阔。
这时,指出:焦点在y轴上的双曲线的几何性质可以类似得出,双曲线的几何性质与坐标系的选择无关,即不随坐标系的改变而改变。
五、例题讲解
例1.求双曲线的实轴长和虚轴长、焦点的坐标、离心率、渐近线方程。
分析:由双曲线的标准方程,容易求出。引导学生用双曲线的实轴长、虚轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在轴上的渐近线是。
例2.已知双曲线的中心在原点,焦点在y轴上,焦距为16,离心率为,求双曲线的标准方程。
例3.求与双曲线共渐近线,且经过点的双曲线的标准方及离心率。
分析:已知双曲线的渐近线求双曲线的标准方程:方法一按焦点位置分别设方程求解;方法二:可直接设所求的双曲线的方程为。
例4.求双曲线的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程。
例5.如图,设与定点的距离和它到直线:的距离的比是常数,求点的轨迹方程。
分析:若设点,则,到直线:的距离,则容易得点的轨迹方程。
例6.双曲线型冷却塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面如图(1),它的最小半径为,上口半径为,下口半径为,高为。试选择适当的坐标系,求出双曲线的方程(各长度量精确到)。
六、课堂练习
1.已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程。
(1)16x2-9y2=144;
(2)16x2-9y2=-144。
2.求双曲线的标准方程:
(1)实轴的长是10,虚轴长是8,焦点在x轴上;
(2)焦距是10,虚轴长是8,焦点在y轴上;
曲线的方程。
点到两准线及右焦点的距离。
高中数学人教B版 (2019)选择性必修 第一册2.7.2 抛物线的几何性质教案: 这是一份高中数学人教B版 (2019)选择性必修 第一册2.7.2 抛物线的几何性质教案,共3页。教案主要包含了教学目标,教学过程等内容,欢迎下载使用。
数学选择性必修 第一册2.7.2 抛物线的几何性质教学设计: 这是一份数学选择性必修 第一册2.7.2 抛物线的几何性质教学设计,共3页。教案主要包含了问题情境,探索研究,归纳总结,例题解析,巩固练习等内容,欢迎下载使用。
高中数学人教B版 (2019)选择性必修 第一册2.6.2 双曲线的几何性质教学设计: 这是一份高中数学人教B版 (2019)选择性必修 第一册2.6.2 双曲线的几何性质教学设计,共4页。教案主要包含了教学目标,教学过程等内容,欢迎下载使用。