16.3 第1课时 分式方程及其解法
展开1.掌握解分式方程的基本思路和解法.(重点)2.理解分式方程可能无解的原因.(难点)
一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行90千米所用时间,与以最大航速逆流航行60千米所用时间相等.设江水的流速为x千米/时,根据题意可列方程 .
这个方程是我们以前学过的方程吗?它与一元一次方程有什么区别?
问题1 一艘轮船在顺水时航行80千米和在逆水时航行60千米用的时间相同,已知水流的速度是3千米/时,问轮船在静水中的速度x千米/时应满足怎样的方程.
问题2 为了帮助遭受自然灾害的地区重建家园,某校团总支号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等.如果设第一次捐款人数为x人,那么x应满足怎样的方程?
思考 由上面的问题,我们得到了三个方程,它们有什么共同特点?
分母中含有未知数的方程叫做分式方程.
(1)是等式;(2)方程中含有分母;(3)分母中含有未知数.
判一判 下列方程中,哪些是分式方程?哪些是整式方程?
方法总结:判断一个方程是否为分式方程,主要是看分母中是否含有未知数(注意:π不是未知数).
你能试着解这个分式方程吗?
(3)在方程两边乘什么样的式子才能把每一个分母都约去?
(4)这样做的依据是什么?
解分式方程最关键的问题是什么?
(1)如何把它转化为整式方程呢?
方程各分母最简公分母是:(30+x)(30-x)
解:方程两边同乘(30+x)(30-x),得
检验:将x=6代入原分式方程中,左边= =右边, 因此x=6是原分式方程的解.
90(30-x)=60(30+x),
x=6是原分式方程的解吗?
解分式方程的基本思路:是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母.这也是解分式方程的一般方法.
下面我们再讨论一个分式方程:
解:方程两边同乘(x+5)(x-5),得
x=5是原分式方程的解吗?
真相揭秘: 分式两边同乘了不为0的式子,所得整式方程的解与分式方程的解相同.
我们再来观察去分母的过程:
真相揭秘:分式两边同乘了等于0的式子,所得整式方程的解使分母为0,这个整式方程的解就不是原分式方程的解.
解分式方程时,去分母后所得整式方程的解有可能使原方程的分母为0,所以分式方程的解必须检验.
这个整式方程的解是不是原分式的解呢?
分式方程解的检验------必不可少的步骤
检验方法: 将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.
1.在方程的两边都乘以最简公分母,约去分母,化成整式方程.2.解这个整式方程.3.把整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则须舍去. 4.写出原方程的根.
简记为:“一化二解三检验”.
“去分母法”解分式方程的步骤
解 :方程两边都乘最简公分母x(x-2),得
解这个一元一次方程,得 x = -3.
检验:把 x=-3 代入最简公分母,得
因此 x = -3 是原分式方程的解.
解:两边都乘以最简公分母(x+2)(x-2), 得 x+2=4.
检验:把x=2代入原方程,最简公分母为0,分式无意义.因此x=2不是原分式方程的解,从而原方程无解.
提醒:在去分母,将分式方程转化为整式方程的过程中出现使最简公分母(或分母)为零的根是增根.
关于x的方程 的解是正数,则a的取值范围是____________.
解析:去分母得2x+a=x-1,解得x=-a-1,∵关于x的方程 的解是正数,∴x>0且x≠1,∴-a-1>0且-a-1≠1,解得a<-1且a≠-2,∴a的取值范围是a<-1且a≠-2.
方法总结:求出方程的解(用未知字母表示),然后根据解的正负性,列关于未知字母的不等式求解,特别注意分母不能为0.
若关于x的分式方程 无解,求m的值.
解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根.
解:方程两边都乘以(x+2)(x-2)得2(x+2)+mx=3(x-2),即(m-1)x=-10.①当m-1=0时,此方程无解,此时m=1;②方程有增根,则x=2或x=-2,当x=2时,代入(m-1)x=-10得(m-1)×2=-10,m=-4;当x=-2时,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.
分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数.
2. 要把方程 化为整式方程,方程两边可以同乘以( )
A. 3y-6 B. 3y C. 3 (3y-6) D. 3y (y-2)
1.下列关于x的方程中,是分式方程的是( )A. B.C. D.
3. 解分式方程 时,去分母后得到的整式方程是( )A.2(x-8)+5x=16(x-7) B.2(x-8)+5x=8C.2(x-8)-5x=16(x-7) D.2(x-8)-5x=8
4.若关于x的分式方程 无解,则m的值为 ( )A.-1,5 B.1 C.-1.5或2 D.-0.5或-1.5
解: 方程两边乘x(x-3),得
检验:当x=9时,x(x-3) ≠0.
所以,原分式方程的解为x=9.
解: 方程两边乘(x-1)(x+2),得
x(x+2)-(x-1)(x+2)=3.
检验:当x=1时, (x-1)(x+2) =0, 因此x=1不是原分式方程的解.
所以,原分式方程无解.
检验:把 代入
8.若关于x的方程 有增根,求m的值.
解:方程两边同乘以x-2, 得2-x+m=2x-4, 合并同类项,得3x=6+m, ∴m=3x-6. ∵该分式方程有增根, ∴x=2, ∴m=0.
分母中含有未知数的方程叫做分式方程
(1)去分母时,原方程的整式部分漏乘
一化(分式方程转化为整式方程);二解(解整式方程);三检验(代入最简公分母看是否为零)
(2)约去分母后,分子是多项式时,没有添括号.(因分数线有括号的作用)
八年级上册第十五章 分式15.3 分式方程完美版ppt课件: 这是一份八年级上册<a href="/sx/tb_c10257_t3/?tag_id=26" target="_blank">第十五章 分式15.3 分式方程完美版ppt课件</a>,共34页。PPT课件主要包含了新课导入,导入课题,学习目标,2会解分式方程,推进新课,知识点1,解分式方程一,如何解分式方程①,例如解分式方程,x-5x+5等内容,欢迎下载使用。
华师大版八年级下册1. 分式图片ppt课件: 这是一份华师大版八年级下册1. 分式图片ppt课件,共31页。PPT课件主要包含了问题引入,分式方程的概念,分母中都含有未知数,分式方程的特征,知识要点,2怎样去分母,如何去分母,分式方程的解法,怎样检验,用框图的方式总结为等内容,欢迎下载使用。
初中数学人教版八年级上册15.3 分式方程课文内容ppt课件: 这是一份初中数学人教版八年级上册15.3 分式方程课文内容ppt课件,共17页。PPT课件主要包含了解方程,-12,-2或1等内容,欢迎下载使用。