终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省13市2021年九年级中考数学真题按题型难易度分层分类汇编:08填空题基础题二

    立即下载
    加入资料篮
    江苏省13市2021年九年级中考数学真题按题型难易度分层分类汇编:08填空题基础题二第1页
    江苏省13市2021年九年级中考数学真题按题型难易度分层分类汇编:08填空题基础题二第2页
    江苏省13市2021年九年级中考数学真题按题型难易度分层分类汇编:08填空题基础题二第3页
    还剩19页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省13市2021年九年级中考数学真题按题型难易度分层分类汇编:08填空题基础题二

    展开

    这是一份江苏省13市2021年九年级中考数学真题按题型难易度分层分类汇编:08填空题基础题二,共22页。
    08填空题基础题二
    (真题来源于苏州卷,南京卷,南通卷,镇江卷,无锡卷,常州卷,盐城卷,淮安卷,徐州卷,宿迁卷,扬州卷,泰州卷,连云港卷)


    二十五.直角三角形斜边上的中线(共1小题)
    30.(2021•盐城)如图,在Rt△ABC中,CD为斜边AB上的中线,若CD=2,则AB=   .

    二十六.勾股定理(共1小题)
    31.(2021•南通)平面直角坐标系xOy中,已知点P(m,3n2﹣9),且实数m,n满足m﹣n2+4=0,则点P到原点O的距离的最小值为    .
    二十七.三角形中位线定理(共1小题)
    32.(2021•扬州)如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,过点D作DE⊥BC,垂足为点E,连接CD,若CD=5,BC=8,则DE=   .

    二十八.多边形内角与外角(共1小题)
    33.(2021•南通)正五边形每个内角的度数为    .
    二十九.平行四边形的性质(共2小题)
    34.(2021•常州)如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,其中点A在x轴正半轴上.若BC=3,则点A的坐标是    .

    35.(2021•扬州)如图,在▱ABCD中,点E在AD上,且EC平分∠BED,若∠EBC=30°,BE=10,则▱ABCD的面积为    .

    三十.菱形的性质(共1小题)
    36.(2021•连云港)如图,菱形ABCD的对角线AC、BD相交于点O,OE⊥AD,垂足为E,AC=8,BD=6,则OE的长为   .

    三十一.矩形的性质(共2小题)
    37.(2021•徐州)如图,四边形ABCD与AEGF均为矩形,点E、F分别在线段AB、AD上.若BE=FD=2cm,矩形AEGF的周长为20cm,则图中阴影部分的面积为    cm2.

    38.(2021•扬州)如图,在△ABC中,AC=BC,矩形DEFG的顶点D、E在AB上,点F、G分别在BC、AC上,若CF=4,BF=3,且DE=2EF,则EF的长为    .

    三十二.圆心角、弧、弦的关系(共1小题)
    39.(2021•南京)如图,AB是⊙O的弦,C是的中点,OC交AB于点D.若AB=8cm,CD=2cm,则⊙O的半径为    cm.

    三十三.圆周角定理(共2小题)
    40.(2021•淮安)如图,AB是⊙O的直径,CD是⊙O的弦,∠CAB=55°,则∠D的度数是    .

    41.(2021•徐州)如图,AB是⊙O的直径,点C、D在⊙O上,若∠ADC=58°,则∠BAC=   °.

    三十四.圆锥的计算(共6小题)
    42.(2021•淮安)若圆锥的侧面积为18π,底面半径为3,则该圆锥的母线长是    .
    43.(2021•南通)圆锥的母线长为2cm,底面圆的半径长为1cm,则该圆锥的侧面积为    cm2.
    44.(2021•徐州)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若母线长l为8cm,扇形的圆心角θ=90°,则圆锥的底面圆半径r为    cm.

    45.(2021•无锡)用半径为50,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面半径为    .
    46.(2021•盐城)设圆锥的底面半径为2,母线长为3,该圆锥的侧面积为    .
    47.(2021•宿迁)已知圆锥的底面圆半径为4,侧面展开图扇形的圆心角为120°,则它的侧面展开图面积为    .
    三十五.命题与定理(共1小题)
    48.(2021•无锡)下列命题中,正确命题的个数为    .
    ①所有的正方形都相似
    ②所有的菱形都相似
    ③边长相等的两个菱形都相似
    ④对角线相等的两个矩形都相似
    三十六.翻折变换(折叠问题)(共2小题)
    49.(2021•镇江)如图,点A,B,C,O在网格中小正方形的顶点处,直线l经过点C,O,将△ABC沿l平移得到△MNO,M是A的对应点,再将这两个三角形沿l翻折,P,Q分别是A,M的对应点.已知网格中每个小正方形的边长都等于1,则PQ的长为    .

    50.(2021•无锡)如图,在Rt△ABC中,∠BAC=90°,AB=2,AC=6,点E在线段AC上,且AE=1,D是线段BC上的一点,连接DE,将四边形ABDE沿直线DE翻折,得到四边形FGDE,当点G恰好落在线段AC上时,AF=   .

    三十七.旋转的性质(共2小题)
    51.(2021•镇江)如图,等腰三角形ABC中,AB=AC,BC=6,cos∠ABC=,点P在边AC上运动(可与点A,C重合),将线段BP绕点P逆时针旋转120°,得到线段DP,连接BD,则BD长的最大值为    .

    52.(2021•苏州)如图,射线OM,ON互相垂直,OA=8,点B位于射线OM的上方,且在线段OA的垂直平分线l上,连接AB,AB=5.将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,若点B′恰好落在射线ON上,则点A′到射线ON的距离d=   .

    三十八.相似三角形的性质(共1小题)
    53.(2021•镇江)如图,点D,E分别在△ABC的边AC,AB上,△ADE∽△ABC,M,N分别是DE,BC的中点,若=,则=   .

    三十九.相似三角形的判定与性质(共2小题)
    54.(2021•徐州)如图,在△ABC中,点D、E分别在边BA、BC上,且==,△DBE与四边形ADEC的面积的比    .

    55.(2021•常州)如图,在△ABC中,AC=3,BC=4,D、E分别在CA、CB上,点F在△ABC内.若四边形CDFE是边长为1的正方形,则sin∠FBA=   .

    四十.解直角三角形的应用-坡度坡角问题(共1小题)
    56.(2021•无锡)一条上山直道的坡度为1:7,沿这条直道上山,每前进100米所上升的高度为    米.
    四十一.由三视图判断几何体(共1小题)
    57.(2021•扬州)如图是某圆柱体果罐,它的主视图是边长为10cm的正方形,该果罐侧面积为    cm2.

    四十二.几何概率(共1小题)
    58.(2021•苏州)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上,每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是    .

    四十三.列表法与树状图法(共1小题)
    59.(2021•镇江)一只不透明的袋子中装有1个黄球,现放若干个红球,它们与黄球除颜色外都相同,搅匀后从中任意摸出两个球,使得P(摸出一红一黄)=P(摸出两红),则放入的红球个数为    .




    【参考答案】
    二十五.直角三角形斜边上的中线(共1小题)
    30.(2021•盐城)如图,在Rt△ABC中,CD为斜边AB上的中线,若CD=2,则AB= 4 .

    【解析】解:∵∠ACB=90°,CD为△ABC斜边AB上的中线,
    ∴CD=AB,
    ∵CD=2,
    ∴AB=2CD=4,
    故答案为:4.
    二十六.勾股定理(共1小题)
    31.(2021•南通)平面直角坐标系xOy中,已知点P(m,3n2﹣9),且实数m,n满足m﹣n2+4=0,则点P到原点O的距离的最小值为   .
    【解析】解:∵m﹣n2+4=0,
    ∴n2﹣4=m,
    ∴3n2﹣9=3m+3,
    ∵P(m,3n2﹣9),
    ∴P点到原点的距离为=,
    ∴点P到原点O的距离的最小值为,
    故答案为.
    二十七.三角形中位线定理(共1小题)
    32.(2021•扬州)如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,过点D作DE⊥BC,垂足为点E,连接CD,若CD=5,BC=8,则DE= 3 .

    【解析】解:∵∠ACB=90°,DE⊥BC,
    ∴DE∥AC,
    ∵点D是AB的中点,
    ∴E是BC的中点,AB=2CD=10,
    ∴AC=2DE,
    ∵BC=8,
    ∴AC===6,
    ∴DE=3.
    故答案为3.
    二十八.多边形内角与外角(共1小题)
    33.(2021•南通)正五边形每个内角的度数为  108° .
    【解析】解:方法一:(5﹣2)•180°=540°,
    540°÷5=108°;

    方法二:360°÷5=72°,
    180°﹣72°=108°,
    所以,正五边形每个内角的度数为108°.
    故答案为:108°.
    二十九.平行四边形的性质(共2小题)
    34.(2021•常州)如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,其中点A在x轴正半轴上.若BC=3,则点A的坐标是  (3,0) .

    【解析】解:∵四边形OABC是平行四边形,BC=3,
    ∴OA=BC=3,
    ∵点A在x轴上,
    ∴点A的坐标为(3,0),
    故答案为:(3,0).
    35.(2021•扬州)如图,在▱ABCD中,点E在AD上,且EC平分∠BED,若∠EBC=30°,BE=10,则▱ABCD的面积为  50 .

    【解析】解:过点E作EF⊥BC,垂足为F,


    ∵∠EBC=30°,BE=10,
    ∴EF=BE=5,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠DEC=∠BCE,
    又EC平分∠BED,即∠BEC=∠DEC,
    ∴∠BCE=∠BEC,
    ∴BE=BC=10,
    ∴平行四边形ABCD的面积=BC×EF=10×5=50,
    故答案为:50.
    三十.菱形的性质(共1小题)
    36.(2021•连云港)如图,菱形ABCD的对角线AC、BD相交于点O,OE⊥AD,垂足为E,AC=8,BD=6,则OE的长为  .

    【解析】解:∵四边形ABCD是菱形,
    ∴AC⊥BD,AO=CO,DO=BO,
    ∵AC=8,BD=6,
    ∴AO=4,DO=3,
    ∴AD===5,
    又∵OE⊥AD,
    ∴,
    ∴,
    解得OE=,
    故答案为:.
    三十一.矩形的性质(共2小题)
    37.(2021•徐州)如图,四边形ABCD与AEGF均为矩形,点E、F分别在线段AB、AD上.若BE=FD=2cm,矩形AEGF的周长为20cm,则图中阴影部分的面积为  24 cm2.

    【解析】解:∵矩形AEGF的周长为20cm,
    ∴AF+AE=10cm,
    ∵AB=AE+BE,AD=AF+DF,BE=FD=2cm,
    ∴阴影部分的面积=AB×AD﹣AE×AF=(AE+2)(AF+2)﹣AE×AF=24(cm2),
    故答案为:24.
    38.(2021•扬州)如图,在△ABC中,AC=BC,矩形DEFG的顶点D、E在AB上,点F、G分别在BC、AC上,若CF=4,BF=3,且DE=2EF,则EF的长为   .

    【解析】解:∵DE=2EF,设EF=x,则DE=2x,
    ∵四边形DEFG是矩形,
    ∴GF∥AB,
    ∴△CGF∽△CAB,
    ∴,即,
    ∴AB=,
    ∴AD+BE=AB﹣DE=,
    ∵AC=BC,
    ∴∠A=∠B,
    在△ADG和△BEF中,

    ∴△ADG≌△BEF(AAS),
    ∴AD=BE=,
    在Rt△BEF中,BE2+EF2=BF2,
    即,
    解得:x=或﹣(舍),
    ∴EF=,
    故答案为:.
    三十二.圆心角、弧、弦的关系(共1小题)
    39.(2021•南京)如图,AB是⊙O的弦,C是的中点,OC交AB于点D.若AB=8cm,CD=2cm,则⊙O的半径为  5 cm.

    【解析】解:如图,连接OA,

    ∵C是的中点,
    ∴D是弦AB的中点,
    ∴OC⊥AB,AD=BD=4,
    ∵OA=OC,CD=2,
    ∴OD=OC﹣CD=OA﹣CD,
    在Rt△OAD中,
    OA2=AD2+OD2,即OA2=16+(OA﹣2)2,
    解得OA=5,
    故答案为:5.
    三十三.圆周角定理(共2小题)
    40.(2021•淮安)如图,AB是⊙O的直径,CD是⊙O的弦,∠CAB=55°,则∠D的度数是  35° .

    【解析】解:∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∵∠CAB=55°,
    ∴∠B=90°﹣∠CAB=35°,
    ∴∠D=∠B=35°.
    故答案为:35°.
    41.(2021•徐州)如图,AB是⊙O的直径,点C、D在⊙O上,若∠ADC=58°,则∠BAC= 32 °.

    【解析】解:∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∵∠B=∠ADC=58°,
    ∴∠BAC=90°﹣∠B=32°.
    故答案为32.
    三十四.圆锥的计算(共6小题)
    42.(2021•淮安)若圆锥的侧面积为18π,底面半径为3,则该圆锥的母线长是  6 .
    【解析】解:底面半径为3,则底面周长=6π,
    设圆锥的母线长为x,
    圆锥的侧面积=×6πx=18π.
    解得:x=6,
    故答案为:6.
    43.(2021•南通)圆锥的母线长为2cm,底面圆的半径长为1cm,则该圆锥的侧面积为  2π cm2.
    【解析】解:圆锥的侧面积为:πrl=2×1π=2πcm2,
    故答案为:2π.
    44.(2021•徐州)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若母线长l为8cm,扇形的圆心角θ=90°,则圆锥的底面圆半径r为  2 cm.

    【解析】解:∵扇形的圆心角为90°,母线长为8cm,
    ∴扇形的弧长为=4π,
    设圆锥的底面半径为rcm,
    则2πr=4π,
    解得:r=2,
    故答案为2.
    45.(2021•无锡)用半径为50,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面半径为   .
    【解析】解:设圆锥的底面圆半径为r,依题意,得
    2πr=,
    解得r=.
    故答案为:.
    46.(2021•盐城)设圆锥的底面半径为2,母线长为3,该圆锥的侧面积为  6π .
    【解析】解:该圆锥的侧面积=π×2×3=6π.
    故答案为6π.
    47.(2021•宿迁)已知圆锥的底面圆半径为4,侧面展开图扇形的圆心角为120°,则它的侧面展开图面积为  48π .
    【解析】解:设圆锥的母线长为R,
    ∵圆锥的底面圆半径为4,
    ∴圆锥的底面周长为8π,即侧面展开图扇形的弧长为8π,
    ∴=8π,
    解得:R=12,
    ∴圆锥的侧面展开图面积==48π,
    故答案为:48π.
    三十五.命题与定理(共1小题)
    48.(2021•无锡)下列命题中,正确命题的个数为  1 .
    ①所有的正方形都相似
    ②所有的菱形都相似
    ③边长相等的两个菱形都相似
    ④对角线相等的两个矩形都相似
    【解析】解:①所有的正方形都相似,正确,符合题意;
    ②所有的菱形都相似,错误,不符合题意;
    ③边长相等的两个菱形都相似,错误,不符合题意;
    ④对角线相等的两个矩形都相似,错误,不符合题意,
    正确的有1个,
    故答案为:1.
    三十六.翻折变换(折叠问题)(共2小题)
    49.(2021•镇江)如图,点A,B,C,O在网格中小正方形的顶点处,直线l经过点C,O,将△ABC沿l平移得到△MNO,M是A的对应点,再将这两个三角形沿l翻折,P,Q分别是A,M的对应点.已知网格中每个小正方形的边长都等于1,则PQ的长为   .

    【解析】解:连接PQ,AM,

    由图形变换可知:PQ=AM,
    由勾股定理得:AM=,
    ∴PQ=.
    故答案为:.
    50.(2021•无锡)如图,在Rt△ABC中,∠BAC=90°,AB=2,AC=6,点E在线段AC上,且AE=1,D是线段BC上的一点,连接DE,将四边形ABDE沿直线DE翻折,得到四边形FGDE,当点G恰好落在线段AC上时,AF=  .

    【解析】解:如图,过点F作FH⊥AC于H,

    ∵将四边形ABDE沿直线DE翻折,得到四边形FGDE,
    ∴AB=FG=2,AE=EF=1,∠BAC=∠EFG=90°,
    ∴EG===3,
    ∵sin∠FEG=,
    ∴,
    ∴HF=,
    ∵cos∠FEG=,
    ∴,
    ∴EH=,
    ∴AH=AE+EH=,
    ∴AF===,
    故答案为:.
    三十七.旋转的性质(共2小题)
    51.(2021•镇江)如图,等腰三角形ABC中,AB=AC,BC=6,cos∠ABC=,点P在边AC上运动(可与点A,C重合),将线段BP绕点P逆时针旋转120°,得到线段DP,连接BD,则BD长的最大值为  9 .

    【解析】解:∵将线段BP绕点P逆时针旋转120°,得到线段DP,
    ∴BP=PD,
    ∴△BPD是等腰三角形,
    ∴∠PBD=30°,
    过点P作PH⊥BD于点H,

    ∴BH=DH,
    ∵cos30°==,
    ∴BH=BP,
    ∴BD=BP,
    ∴当BP最大时,BD取最大值,即点P与点A重合时,BP=BA最大,
    过点A作AG⊥BC于点G,
    ∵AB=AC,AG⊥BC,
    ∴BG=BC=3,
    ∵cos∠ABC=,
    ∴,
    ∴AB=9,
    ∴BD最大值为:BP=9.
    故答案为:9.
    52.(2021•苏州)如图,射线OM,ON互相垂直,OA=8,点B位于射线OM的上方,且在线段OA的垂直平分线l上,连接AB,AB=5.将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,若点B′恰好落在射线ON上,则点A′到射线ON的距离d=  .

    【解析】解:设OA的垂直平分线与OA交于C,将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,C随之旋转到C',
    过A'作A'H⊥ON于H,过C'作C'D⊥ON于D,过A'作A'E⊥DC'于E,如图:

    ∵OA=8,AB=5,BC是OA的垂直平分线,
    ∴OB=5,OC=AC=4,BC=3,cos∠BOC==,sin∠BOC==,
    ∵线段AB绕点O按逆时针方向旋转得到对应线段A′B′,C随之旋转到C',
    ∴B'C'=BC=3,A'C'=AC=4,∠BOC=∠B'OC',
    ∵∠B'C'D=∠B'C'O﹣∠DC'O=90°﹣∠DC'O=∠B'OC',
    ∴cos∠B'C'D=,
    Rt△B'C'D中,=,即=,
    ∴C'D=,
    ∵AE∥ON,
    ∴∠B'OC'=∠C'A'E,
    ∴sin∠C'AE=sin∠B'OC'=sin∠BOC=,
    Rt△A'C'E中,=,即=,
    ∴C'E=,
    ∴DE=C'D+C'E=,
    而A'H⊥ON,C'D⊥ON,A'E⊥DC',
    ∴四边形A'EDH是矩形,
    ∴A'H=DE,即A'到ON的距离是.
    故答案为:.
    方法二:过A作AC⊥OB于C,如图:

    由旋转可知:点A′到射线ON的距离d=AC,
    ∵OB•AC=OA•BD,
    ∴AC==.
    三十八.相似三角形的性质(共1小题)
    53.(2021•镇江)如图,点D,E分别在△ABC的边AC,AB上,△ADE∽△ABC,M,N分别是DE,BC的中点,若=,则=  .

    【解析】解:∵M,N分别是DE,BC的中点,
    ∴AM、AN分别为△ADE、△ABC的中线,
    ∵△ADE∽△ABC,
    ∴==,
    ∴=()2=,
    故答案为:.
    三十九.相似三角形的判定与性质(共2小题)
    54.(2021•徐州)如图,在△ABC中,点D、E分别在边BA、BC上,且==,△DBE与四边形ADEC的面积的比   .

    【解析】解:∵==,则设AD=3m,DB=2m,CE=3k,EB=2k,
    ∴=,=,
    ∴=,
    又∠B=∠B,
    ∴△DBE∽△ABC.
    相似比为,面积比==,
    设S△DBE=4a,则S△ABC=25a,
    ∴S四边形ADEC=25a﹣4a=21a,
    ∴S△DBE:S四边形ADEC=.
    故答案为:.
    55.(2021•常州)如图,在△ABC中,AC=3,BC=4,D、E分别在CA、CB上,点F在△ABC内.若四边形CDFE是边长为1的正方形,则sin∠FBA=  .

    【解析】解:连接AF,过点F作FG⊥AB于G,

    ∵四边形CDFE是边长为1的正方形,
    ∴CD=CE=DF=EF=1,∠C=∠ADF=90°,
    ∵AC=3,BC=4,
    ∴AD=2,BE=3,
    ∴AB==5,AF==,BF==,
    设BG=x,
    ∵FG2=AF2﹣AG2=BF2﹣BG2,
    ∴5﹣(5﹣x)2=10﹣x2,解得:x=3,
    ∴FG==1,
    ∴sin∠FBA==.
    故答案为:.
    四十.解直角三角形的应用-坡度坡角问题(共1小题)
    56.(2021•无锡)一条上山直道的坡度为1:7,沿这条直道上山,每前进100米所上升的高度为  10 米.
    【解析】解:设上升的高度为x米,
    ∵上山直道的坡度为1:7,
    ∴水平距离为7x米,
    由勾股定理得:x2+(7x)2=1002,
    解得:x1=10,x2=﹣10(舍去),
    故答案为:10.
    四十一.由三视图判断几何体(共1小题)
    57.(2021•扬州)如图是某圆柱体果罐,它的主视图是边长为10cm的正方形,该果罐侧面积为  100π cm2.

    【解析】解:由题意得圆柱的底面直径为10cm,高为10cm,
    ∴侧面积=10π×10=100π(cm2).
    故答案为:100π.
    四十二.几何概率(共1小题)
    58.(2021•苏州)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上,每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是   .

    【解析】解:若将每个方格地砖的面积记为1,则图中地砖的总面积为9,其中阴影部分的面积为2,
    所以该小球停留在黑色区域的概率是,
    故答案为:.
    四十三.列表法与树状图法(共1小题)
    59.(2021•镇江)一只不透明的袋子中装有1个黄球,现放若干个红球,它们与黄球除颜色外都相同,搅匀后从中任意摸出两个球,使得P(摸出一红一黄)=P(摸出两红),则放入的红球个数为  3 .
    【解析】解:假设袋中红球个数为1,
    此时袋中有1个黄球、1个红球,
    搅匀后从中任意摸出两个球,P(摸出一红一黄)=1,P(摸出两红)=0,不符合题意.
    假设袋中的红球个数为2,
    列树状图如下:

    由图可知,共有6种情况,其中两次摸到红球的情况有2种,摸出一红一黄的有4种结果,
    ∴P(摸出一红一黄)==,P(摸出两红)==,不符合题意,
    假设袋中的红球个数为3,
    画树状图如下:

    由图可知,共有12种情况,其中两次摸到红球的情况有6种,摸出一红一黄的有6种结果,
    ∴P(摸出一红一黄)=P(摸出两红)==,符合题意,
    所以放入的红球个数为3,
    故答案为:3.


    相关试卷

    江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-04填空题基础题②:

    这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-04填空题基础题②,共22页。

    江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-04填空题基础题①:

    这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-04填空题基础题①,共21页。

    江苏省13市2021年九年级中考数学真题按题型难易度分层分类汇编:12解答题基础题二:

    这是一份江苏省13市2021年九年级中考数学真题按题型难易度分层分类汇编:12解答题基础题二,共32页。试卷主要包含了已知等内容,欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map